Math Problem Statement
Selidiki apakah deret berikut konvergen atau divergen sigma yang berjalan dari n=1 sampai tak hingga (n!)^2 dikali 2^n/(2n +2)!
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Calculus
Series Convergence
Factorial
Formulas
Ratio Test: L = lim (n → ∞) |a_(n+1) / a_n|
General term of the series: a_n = (n!)^2 * 2^n / (2n + 2)!
Theorems
Ratio Test for Series Convergence
Suitable Grade Level
Undergraduate Calculus
Related Recommendation
Determine Convergence of Series Using Ratio Test: \(\sum_{n=1}^{\infty} \frac{2^n (n+1)}{n!}\)
Determine Convergence of Series with Factorials: Ratio Test
Convergence of Series \(\sum_{k=0}^{\infty} \frac{2^k}{(2k)!}\) Using Ratio Test
Applying the Ratio Test to the Series Σ(3^n^2 / (n^n * n!))
Series Convergence: Comparison Test for ∑ n!/(n+2)!