Math Problem Statement

Исследовать на сходимость следующие числовые ряды (для знакочередующихся рядов провести еще исследование на абсолютную и условную сходимость):

Исследовать на сходимость следующие числовые ряды (для знакочередующихся рядов провести еще исследование на абсолютную и условную сходимость):

Solution

To determine the convergence of the given series

n=1(n+2)!(n+5)n,\sum_{n=1}^\infty \frac{(n+2)!}{(n+5)^n},

let's analyze it in detail:


Step 1: Apply Ratio Test

The ratio test is a common way to check the convergence of series involving factorials and powers. The test computes:

L=limnan+1an,L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|,

where an=(n+2)!(n+5)na_n = \frac{(n+2)!}{(n+5)^n}.

Compute an+1an\frac{a_{n+1}}{a_n}:

an=(n+2)!(n+5)n,an+1=(n+3)!(n+6)n+1.a_n = \frac{(n+2)!}{(n+5)^n}, \quad a_{n+1} = \frac{(n+3)!}{(n+6)^{n+1}}.

The ratio is: an+1an=(n+3)!(n+6)n+1(n+2)!(n+5)n=(n+3)!(n+2)!(n+6)n+1(n+5)n.\frac{a_{n+1}}{a_n} = \frac{\frac{(n+3)!}{(n+6)^{n+1}}}{\frac{(n+2)!}{(n+5)^n}} = \frac{(n+3)!}{(n+2)!(n+6)^{n+1}} \cdot (n+5)^n.

Simplify (n+3)!(n+3)!: (n+3)!=(n+3)(n+2)!.(n+3)! = (n+3)(n+2)!.

Thus: an+1an=(n+3)(n+2)!(n+2)!(n+6)n+1(n+5)n=n+3(n+6)n+1(n+5)n.\frac{a_{n+1}}{a_n} = \frac{(n+3)(n+2)!}{(n+2)!(n+6)^{n+1}} \cdot (n+5)^n = \frac{n+3}{(n+6)^{n+1}} \cdot (n+5)^n.

Split the powers of (n+6)(n+6) and (n+5)(n+5):

an+1an=n+3n+6(n+5n+6)n.\frac{a_{n+1}}{a_n} = \frac{n+3}{n+6} \cdot \left( \frac{n+5}{n+6} \right)^n.


Step 2: Take the Limit as nn \to \infty

As nn \to \infty:

  1. n+3n+61\frac{n+3}{n+6} \to 1,
  2. (n+5n+6)ne1\left( \frac{n+5}{n+6} \right)^n \to e^{-1} because ln(11n+6)1n+6\ln\left( 1 - \frac{1}{n+6} \right) \sim -\frac{1}{n+6}.

Thus: L=1e1=1e.L = 1 \cdot e^{-1} = \frac{1}{e}.


Step 3: Interpret the Result

From the ratio test:

  • If L<1L < 1, the series converges absolutely.
  • If L>1L > 1, the series diverges.
  • If L=1L = 1, the test is inconclusive.

Here, L=1e<1L = \frac{1}{e} < 1. Therefore, the series converges absolutely.


Final Conclusion

The series

n=1(n+2)!(n+5)n\sum_{n=1}^\infty \frac{(n+2)!}{(n+5)^n}

converges absolutely.

Would you like more details about any of these steps or examples of other series tests?


Related Questions

  1. What happens if L=1L = 1 in the ratio test?
  2. How does the root test compare to the ratio test for factorial series?
  3. What are alternating series, and how is their convergence tested?
  4. Can this series be approximated using dominant terms for nn \to \infty?
  5. How does absolute convergence differ from conditional convergence?

Tip

For series involving factorials, always consider the ratio test or Stirling's approximation for large nn.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Series Convergence
Factorials
Power Series
Alternating Series
Absolute Convergence

Formulas

\sum_{n=1}^\infty \frac{(n+2)!}{(n+5)^n}
L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|

Theorems

Ratio Test
Absolute Convergence Test

Suitable Grade Level

Grades 11-12