Math Problem Statement

What is the inverse Laplace transform of \( \frac{s}{(s^2 - 4)^2} \)?

Solution

The equation shown in the image involves the inverse Laplace transform. It is:

L1[s(s24)2]\mathcal{L}^{-1} \left[ \frac{s}{(s^2 - 4)^2} \right]

Let’s solve step by step:


Step 1: Simplify the Denominator

The term (s24)2(s^2 - 4)^2 can be rewritten as (s2)2(s+2)2(s - 2)^2(s + 2)^2, factoring s24s^2 - 4 into (s2)(s+2)(s - 2)(s + 2).

Thus, the given expression becomes:

s(s2)2(s+2)2\frac{s}{(s - 2)^2 (s + 2)^2}


Step 2: Use Partial Fraction Decomposition

We express the fraction as a sum of partial fractions. Set:

s(s2)2(s+2)2=A(s2)2+B(s2)+C(s+2)2+D(s+2)\frac{s}{(s - 2)^2 (s + 2)^2} = \frac{A}{(s - 2)^2} + \frac{B}{(s - 2)} + \frac{C}{(s + 2)^2} + \frac{D}{(s + 2)}

Multiply through by the denominator to eliminate fractions:

s=A(s+2)2+B(s+2)2(s2)+C(s2)2+D(s2)2(s+2)s = A(s + 2)^2 + B(s + 2)^2(s - 2) + C(s - 2)^2 + D(s - 2)^2(s + 2)

Expand and group terms to solve for AA, BB, CC, and DD. After solving, we find:

A=18,B=14,C=18,D=14.A = \frac{1}{8}, \quad B = \frac{1}{4}, \quad C = \frac{1}{8}, \quad D = -\frac{1}{4}.


Step 3: Take the Inverse Laplace Transform

Using the linearity of the inverse Laplace transform, we compute each term separately:

(i) Term with AA:

[ \mathcal{L}^{-1} \left[ \frac{A}{(s - 2)^2} \right] = \frac{1}{8} \mathcal{L}^{-1} \left[ \frac{1}{(s - 2)^2} \right] = \frac{1}{8} t e^{2t}. ]

(ii) Term with BB:

[ \mathcal{L}^{-1} \left[ \frac{B}{s - 2} \right] = \frac{1}{4} \mathcal{L}^{-1} \left[ \frac{1}{s - 2} \right] = \frac{1}{4} e^{2t}. ]

(iii) Term with CC:

[ \mathcal{L}^{-1} \left[ \frac{C}{(s + 2)^2} \right] = \frac{1}{8} \mathcal{L}^{-1} \left[ \frac{1}{(s + 2)^2} \right] = \frac{1}{8} t e^{-2t}. ]

(iv) Term with DD:

[ \mathcal{L}^{-1} \left[ \frac{D}{s + 2} \right] = -\frac{1}{4} \mathcal{L}^{-1} \left[ \frac{1}{s + 2} \right] = -\frac{1}{4} e^{-2t}. ]


Step 4: Combine the Results

Summing all terms:

L1[s(s24)2]=18te2t+14e2t+18te2t14e2t.\mathcal{L}^{-1} \left[ \frac{s}{(s^2 - 4)^2} \right] = \frac{1}{8} t e^{2t} + \frac{1}{4} e^{2t} + \frac{1}{8} t e^{-2t} - \frac{1}{4} e^{-2t}.

This is the final result.


Let me know if you'd like a more detailed breakdown!

Here are some follow-up questions to deepen understanding:

  1. What is the general approach to solving inverse Laplace transforms involving repeated roots?
  2. How is partial fraction decomposition applied to higher-order polynomials?
  3. What properties of the Laplace transform make it linear?
  4. How does the Laplace transform handle delays in time?
  5. Can you derive the inverse Laplace of 1(sa)n\frac{1}{(s - a)^n} in general?

Tip: Always verify the partial fraction decomposition by re-expanding the terms to confirm it equals the original expression.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Inverse Laplace Transform
Partial Fraction Decomposition
Laplace Transform Properties

Formulas

\mathcal{L}^{-1}\left[\frac{1}{(s - a)^2}\right] = t e^{at}
\mathcal{L}^{-1}\left[\frac{1}{s - a}\right] = e^{at}

Theorems

Inverse Laplace Transform
Partial Fraction Decomposition

Suitable Grade Level

Undergraduate