Math Problem Statement

The function \( f(x) = \frac{2}{3x - 5} \) where \( x \neq \frac{5}{3} \). (a) Find \( f\left( \frac{1}{3} \right) \). (b) Find \( f^{-1}(x) \). The function \( g(x) = 5x^2 - 20x + 23 \). (c) Express \( g(x) \) in the form \( a(x - b)^2 + c \).

Solution

Let's tackle each part of this problem step-by-step.

Problem Overview

  1. Given function f(x)=23x5f(x) = \frac{2}{3x - 5}
    • Part (a): Find f(13)f\left(\frac{1}{3}\right)
    • Part (b): Find the inverse function f1(x)f^{-1}(x)
  2. Given function g(x)=5x220x+23g(x) = 5x^2 - 20x + 23
    • Part (c): Express g(x)g(x) in the form a(xb)2+ca(x - b)^2 + c

Solution

Part (a): Find f(13)f\left(\frac{1}{3}\right)

To find f(13)f\left(\frac{1}{3}\right), substitute x=13x = \frac{1}{3} into f(x)f(x):

f(13)=23(13)5=215=24=12f\left(\frac{1}{3}\right) = \frac{2}{3\left(\frac{1}{3}\right) - 5} = \frac{2}{1 - 5} = \frac{2}{-4} = -\frac{1}{2}

So, f(13)=12f\left(\frac{1}{3}\right) = -\frac{1}{2}

Part (b): Find f1(x)f^{-1}(x)

To find the inverse function f1(x)f^{-1}(x), start by setting y=f(x)y = f(x) and solving for xx in terms of yy:

  1. Let y=23x5y = \frac{2}{3x - 5}.
  2. Multiply both sides by 3x53x - 5: y(3x5)=2y(3x - 5) = 2
  3. Expand and rearrange to isolate xx: 3xy5y=23xy - 5y = 2 3xy=2+5y3xy = 2 + 5y x=2+5y3yx = \frac{2 + 5y}{3y}

Thus, the inverse function is: f1(x)=2+5x3xf^{-1}(x) = \frac{2 + 5x}{3x}

Part (c): Express g(x)=5x220x+23g(x) = 5x^2 - 20x + 23 in the form a(xb)2+ca(x - b)^2 + c

To rewrite g(x)=5x220x+23g(x) = 5x^2 - 20x + 23 in the form a(xb)2+ca(x - b)^2 + c, complete the square.

  1. Factor out the coefficient of x2x^2 from the first two terms: g(x)=5(x24x)+23g(x) = 5(x^2 - 4x) + 23
  2. Complete the square inside the parentheses:
    • Take half of 4-4, square it to get 44, and add/subtract 44 inside the parentheses. g(x)=5(x24x+44)+23g(x) = 5(x^2 - 4x + 4 - 4) + 23 =5((x2)24)+23= 5((x - 2)^2 - 4) + 23 =5(x2)220+23= 5(x - 2)^2 - 20 + 23 =5(x2)2+3= 5(x - 2)^2 + 3

So, in the form a(xb)2+ca(x - b)^2 + c, we have: g(x)=5(x2)2+3g(x) = 5(x - 2)^2 + 3


Summary of Answers

  1. (a) f(13)=12f\left(\frac{1}{3}\right) = -\frac{1}{2}
  2. (b) f1(x)=2+5x3xf^{-1}(x) = \frac{2 + 5x}{3x}
  3. (c) g(x)=5(x2)2+3g(x) = 5(x - 2)^2 + 3

Would you like further details on any part, or have any additional questions?


Follow-Up Questions

  1. What are the general steps to finding the inverse of a function?
  2. How does completing the square help in converting a quadratic function to vertex form?
  3. Could the domain of f(x)=23x5f(x) = \frac{2}{3x - 5} affect the inverse function?
  4. Why is vertex form useful for analyzing the graph of a quadratic function?
  5. How would you verify that f1(f(x))=xf^{-1}(f(x)) = x for the inverse found?

Tip

When finding inverses, always check if the function is one-to-one in its domain to ensure that an inverse exists.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Inverse Functions
Function Evaluation
Completing the Square
Quadratic Functions

Formulas

Inverse function process: if \( y = f(x) \), solve for \( x \) in terms of \( y \)
Completing the square for a quadratic function: \( ax^2 + bx + c = a(x - h)^2 + k \)

Theorems

Inverse Functions
Properties of Quadratic Functions

Suitable Grade Level

Grades 11-12