Math Problem Statement

Solve Integrate (csc 2x)^2 * cot 2x dx. (i) use u = csc 2x, (ii) use u = cot 2x

Solution

We will evaluate the integral (csc2x)2cot2xdx\int (\csc 2x)^2 \cot 2x \, dx using two different substitutions.


(i) Using u=csc2xu = \csc 2x

  1. Substitute u=csc2xu = \csc 2x: dudx=2csc2xcot2x    du=2csc2xcot2xdx\frac{du}{dx} = -2 \csc 2x \cot 2x \implies du = -2 \csc 2x \cot 2x \, dx Therefore: csc2xcot2xdx=12du\csc 2x \cot 2x \, dx = -\frac{1}{2} \, du

  2. Rewrite the integral: Substituting u=csc2xu = \csc 2x, we get: (csc2x)2cot2xdx=u2(12du)=12u2du\int (\csc 2x)^2 \cot 2x \, dx = \int u^2 \left(-\frac{1}{2} \, du\right) = -\frac{1}{2} \int u^2 \, du

  3. Integrate: u2du=u33\int u^2 \, du = \frac{u^3}{3} Thus: 12u2du=12u33=u36-\frac{1}{2} \int u^2 \, du = -\frac{1}{2} \cdot \frac{u^3}{3} = -\frac{u^3}{6}

  4. Substitute back u=csc2xu = \csc 2x: u36=(csc2x)36-\frac{u^3}{6} = -\frac{(\csc 2x)^3}{6}

So the solution is: (csc2x)36+C\boxed{-\frac{(\csc 2x)^3}{6} + C}


(ii) Using u=cot2xu = \cot 2x

  1. Substitute u=cot2xu = \cot 2x: dudx=2(csc2x)2    du=2(csc2x)2dx\frac{du}{dx} = -2 (\csc 2x)^2 \implies du = -2 (\csc 2x)^2 \, dx Therefore: (csc2x)2dx=12du(\csc 2x)^2 \, dx = -\frac{1}{2} \, du

  2. Rewrite the integral: Substituting u=cot2xu = \cot 2x, we get: (csc2x)2cot2xdx=u(12du)=12udu\int (\csc 2x)^2 \cot 2x \, dx = \int u \left(-\frac{1}{2} \, du\right) = -\frac{1}{2} \int u \, du

  3. Integrate: udu=u22\int u \, du = \frac{u^2}{2} Thus: 12udu=12u22=u24-\frac{1}{2} \int u \, du = -\frac{1}{2} \cdot \frac{u^2}{2} = -\frac{u^2}{4}

  4. Substitute back u=cot2xu = \cot 2x: u24=(cot2x)24-\frac{u^2}{4} = -\frac{(\cot 2x)^2}{4}

So the solution is: (cot2x)24+C\boxed{-\frac{(\cot 2x)^2}{4} + C}


Final Answers:

  1. Using u=csc2xu = \csc 2x: (csc2x)36+C-\frac{(\csc 2x)^3}{6} + C

  2. Using u=cot2xu = \cot 2x: (cot2x)24+C-\frac{(\cot 2x)^2}{4} + C


Would you like detailed verification or further explanation? Here are five related questions for practice:

  1. Integrate (cscx)2cotxdx\int (\csc x)^2 \cot x \, dx using substitution.
  2. Solve cotxdx\int \cot x \, dx using a substitution of your choice.
  3. Evaluate (cscx)3dx\int (\csc x)^3 \, dx.
  4. Show how to derive the derivative of cscx\csc x using the quotient rule.
  5. Prove the trigonometric identity (csc2x1)=cot2x(\csc^2 x - 1) = \cot^2 x.

Tip: For integrals involving cscx\csc x or cotx\cot x, substitutions are often helpful for simplifying powers of trigonometric functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Trigonometric Integrals
Substitution Method

Formulas

Integration of u^n: ∫u^n du = u^(n+1)/(n+1) + C (for n ≠ -1)
Derivative of csc x: d/dx(csc x) = -csc x cot x
Derivative of cot x: d/dx(cot x) = -csc^2 x

Theorems

Substitution Rule in Integration

Suitable Grade Level

Grades 11-12 or Early College