SolutionWe will evaluate the integral ∫ ( csc 2 x ) 2 cot 2 x d x \int (\csc 2x)^2 \cot 2x \, dx ∫ ( csc 2 x ) 2 cot 2 x d x using two different substitutions.
(i) Using u = csc 2 x u = \csc 2x u = csc 2 x
Substitute u = csc 2 x u = \csc 2x u = csc 2 x :
d u d x = − 2 csc 2 x cot 2 x ⟹ d u = − 2 csc 2 x cot 2 x d x \frac{du}{dx} = -2 \csc 2x \cot 2x \implies du = -2 \csc 2x \cot 2x \, dx d x d u = − 2 csc 2 x cot 2 x ⟹ d u = − 2 csc 2 x cot 2 x d x
Therefore:
csc 2 x cot 2 x d x = − 1 2 d u \csc 2x \cot 2x \, dx = -\frac{1}{2} \, du csc 2 x cot 2 x d x = − 2 1 d u
Rewrite the integral:
Substituting u = csc 2 x u = \csc 2x u = csc 2 x , we get:
∫ ( csc 2 x ) 2 cot 2 x d x = ∫ u 2 ( − 1 2 d u ) = − 1 2 ∫ u 2 d u \int (\csc 2x)^2 \cot 2x \, dx = \int u^2 \left(-\frac{1}{2} \, du\right) = -\frac{1}{2} \int u^2 \, du ∫ ( csc 2 x ) 2 cot 2 x d x = ∫ u 2 ( − 2 1 d u ) = − 2 1 ∫ u 2 d u
Integrate:
∫ u 2 d u = u 3 3 \int u^2 \, du = \frac{u^3}{3} ∫ u 2 d u = 3 u 3
Thus:
− 1 2 ∫ u 2 d u = − 1 2 ⋅ u 3 3 = − u 3 6 -\frac{1}{2} \int u^2 \, du = -\frac{1}{2} \cdot \frac{u^3}{3} = -\frac{u^3}{6} − 2 1 ∫ u 2 d u = − 2 1 ⋅ 3 u 3 = − 6 u 3
Substitute back u = csc 2 x u = \csc 2x u = csc 2 x :
− u 3 6 = − ( csc 2 x ) 3 6 -\frac{u^3}{6} = -\frac{(\csc 2x)^3}{6} − 6 u 3 = − 6 ( c s c 2 x ) 3
So the solution is:
− ( csc 2 x ) 3 6 + C \boxed{-\frac{(\csc 2x)^3}{6} + C} − 6 ( csc 2 x ) 3 + C
(ii) Using u = cot 2 x u = \cot 2x u = cot 2 x
Substitute u = cot 2 x u = \cot 2x u = cot 2 x :
d u d x = − 2 ( csc 2 x ) 2 ⟹ d u = − 2 ( csc 2 x ) 2 d x \frac{du}{dx} = -2 (\csc 2x)^2 \implies du = -2 (\csc 2x)^2 \, dx d x d u = − 2 ( csc 2 x ) 2 ⟹ d u = − 2 ( csc 2 x ) 2 d x
Therefore:
( csc 2 x ) 2 d x = − 1 2 d u (\csc 2x)^2 \, dx = -\frac{1}{2} \, du ( csc 2 x ) 2 d x = − 2 1 d u
Rewrite the integral:
Substituting u = cot 2 x u = \cot 2x u = cot 2 x , we get:
∫ ( csc 2 x ) 2 cot 2 x d x = ∫ u ( − 1 2 d u ) = − 1 2 ∫ u d u \int (\csc 2x)^2 \cot 2x \, dx = \int u \left(-\frac{1}{2} \, du\right) = -\frac{1}{2} \int u \, du ∫ ( csc 2 x ) 2 cot 2 x d x = ∫ u ( − 2 1 d u ) = − 2 1 ∫ u d u
Integrate:
∫ u d u = u 2 2 \int u \, du = \frac{u^2}{2} ∫ u d u = 2 u 2
Thus:
− 1 2 ∫ u d u = − 1 2 ⋅ u 2 2 = − u 2 4 -\frac{1}{2} \int u \, du = -\frac{1}{2} \cdot \frac{u^2}{2} = -\frac{u^2}{4} − 2 1 ∫ u d u = − 2 1 ⋅ 2 u 2 = − 4 u 2
Substitute back u = cot 2 x u = \cot 2x u = cot 2 x :
− u 2 4 = − ( cot 2 x ) 2 4 -\frac{u^2}{4} = -\frac{(\cot 2x)^2}{4} − 4 u 2 = − 4 ( c o t 2 x ) 2
So the solution is:
− ( cot 2 x ) 2 4 + C \boxed{-\frac{(\cot 2x)^2}{4} + C} − 4 ( cot 2 x ) 2 + C
Final Answers:
Using u = csc 2 x u = \csc 2x u = csc 2 x :
− ( csc 2 x ) 3 6 + C -\frac{(\csc 2x)^3}{6} + C − 6 ( c s c 2 x ) 3 + C
Using u = cot 2 x u = \cot 2x u = cot 2 x :
− ( cot 2 x ) 2 4 + C -\frac{(\cot 2x)^2}{4} + C − 4 ( c o t 2 x ) 2 + C
Would you like detailed verification or further explanation? Here are five related questions for practice:
Integrate ∫ ( csc x ) 2 cot x d x \int (\csc x)^2 \cot x \, dx ∫ ( csc x ) 2 cot x d x using substitution.
Solve ∫ cot x d x \int \cot x \, dx ∫ cot x d x using a substitution of your choice.
Evaluate ∫ ( csc x ) 3 d x \int (\csc x)^3 \, dx ∫ ( csc x ) 3 d x .
Show how to derive the derivative of csc x \csc x csc x using the quotient rule.
Prove the trigonometric identity ( csc 2 x − 1 ) = cot 2 x (\csc^2 x - 1) = \cot^2 x ( csc 2 x − 1 ) = cot 2 x .
Tip: For integrals involving csc x \csc x csc x or cot x \cot x cot x , substitutions are often helpful for simplifying powers of trigonometric functions.