Math Problem Statement

integral of cot^2x cosec^2x

Solution

To solve the integral of cot2(x)csc2(x)\cot^2(x) \csc^2(x), let's proceed step-by-step:

Problem

I=cot2(x)csc2(x)dxI = \int \cot^2(x) \csc^2(x) \, dx

Step 1: Use trigonometric identities

Recall the identity: csc2(x)=1+cot2(x)\csc^2(x) = 1 + \cot^2(x) Substituting csc2(x)\csc^2(x) into the integral doesn't simplify directly, so let's expand cot2(x)\cot^2(x) to explore further.

Step 2: Express cot2(x)\cot^2(x) as (csc2(x)1)(\csc^2(x) - 1)

We rewrite the integral: I=cot2(x)csc2(x)dx=(csc2(x)1)csc2(x)dxI = \int \cot^2(x) \csc^2(x) \, dx = \int (\csc^2(x) - 1) \csc^2(x) \, dx Now expand the product: I=csc4(x)dxcsc2(x)dxI = \int \csc^4(x) \, dx - \int \csc^2(x) \, dx

Step 3: Solve each term separately

  1. Second term: csc2(x)dx-\int \csc^2(x) \, dx: The integral of csc2(x)\csc^2(x) is a standard result: csc2(x)dx=cot(x)\int \csc^2(x) \, dx = -\cot(x)

  2. First term: csc4(x)dx\int \csc^4(x) \, dx: For csc4(x)dx\int \csc^4(x) \, dx, we use the reduction formula: cscn(x)dx=cscn2(x)cot(x)n1+n2n1cscn2(x)dx\int \csc^n(x) \, dx = -\frac{\csc^{n-2}(x) \cot(x)}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2}(x) \, dx Applying this for n=4n = 4: csc4(x)dx=csc2(x)cot(x)3+23csc2(x)dx\int \csc^4(x) \, dx = -\frac{\csc^2(x) \cot(x)}{3} + \frac{2}{3} \int \csc^2(x) \, dx Substituting csc2(x)dx=cot(x)\int \csc^2(x) \, dx = -\cot(x): csc4(x)dx=csc2(x)cot(x)323cot(x)\int \csc^4(x) \, dx = -\frac{\csc^2(x) \cot(x)}{3} - \frac{2}{3} \cot(x)

Step 4: Combine the results

Now substitute back: I=(csc2(x)cot(x)323cot(x))(cot(x))I = \left(-\frac{\csc^2(x) \cot(x)}{3} - \frac{2}{3} \cot(x)\right) - (-\cot(x)) Simplify: I=csc2(x)cot(x)323cot(x)+cot(x)I = -\frac{\csc^2(x) \cot(x)}{3} - \frac{2}{3} \cot(x) + \cot(x) I=csc2(x)cot(x)3+13cot(x)+CI = -\frac{\csc^2(x) \cot(x)}{3} + \frac{1}{3} \cot(x) + C

Final Answer:

cot2(x)csc2(x)dx=csc2(x)cot(x)3+13cot(x)+C\int \cot^2(x) \csc^2(x) \, dx = -\frac{\csc^2(x) \cot(x)}{3} + \frac{1}{3} \cot(x) + C

Would you like more details or assistance with similar problems?


Related Questions:

  1. What is the reduction formula for integrals of cscn(x)\csc^n(x)?
  2. How is the identity csc2(x)=1+cot2(x)\csc^2(x) = 1 + \cot^2(x) derived?
  3. Can you solve cot2(x)dx\int \cot^2(x) \, dx?
  4. What are the standard integral results for csc2(x)\int \csc^2(x) and cot(x)\int \cot(x)?
  5. How do you simplify trigonometric integrals effectively?

Tip:

When handling integrals with powers of trigonometric functions, look for identities or reduction formulas to simplify the problem systematically.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Integrals
Integration of Trigonometric Functions
Trigonometric Identities

Formulas

csc^2(x) = 1 + cot^2(x)
Integral of csc^2(x) = -cot(x)
Reduction Formula for csc^n(x)

Theorems

Trigonometric Identities
Integration by Substitution
Reduction Formula for Integrals of csc^n(x)

Suitable Grade Level

College Level