Math Problem Statement

integrate 3/(4x^2-25)^1/2

Solution

To solve the integral 34x225dx\int \frac{3}{\sqrt{4x^2 - 25}} \, dx, we can use a standard technique for integrals involving expressions of the form ax2b\sqrt{ax^2 - b}, which is often solved by trigonometric substitution.

Step-by-step solution:

  1. Expression Setup:

    The given integral is: 34x225dx\int \frac{3}{\sqrt{4x^2 - 25}} \, dx The denominator suggests the form a2x2b2\sqrt{a^2x^2 - b^2}, which is typically solved with a trigonometric substitution.

  2. Substitute to simplify:

    First, factor the expression inside the square root: 4x225=(2x)252\sqrt{4x^2 - 25} = \sqrt{(2x)^2 - 5^2} This is now in the form a2x2b2\sqrt{a^2x^2 - b^2}, where a=2a = 2 and b=5b = 5.

    We use the substitution: 2x=5sec(θ)2x = 5 \sec(\theta) This simplifies the square root because: (2x)252=25sec2(θ)25=5tan(θ)\sqrt{(2x)^2 - 5^2} = \sqrt{25\sec^2(\theta) - 25} = 5 \tan(\theta) Also, differentiate 2x=5sec(θ)2x = 5 \sec(\theta) with respect to xx: 2dx=5sec(θ)tan(θ)dθ2 \, dx = 5 \sec(\theta) \tan(\theta) \, d\theta Thus, dx=5sec(θ)tan(θ)2dθdx = \frac{5 \sec(\theta) \tan(\theta)}{2} \, d\theta.

  3. Substitute into the integral:

    Now substitute these into the original integral: 34x225dx=35tan(θ)5sec(θ)tan(θ)2dθ\int \frac{3}{\sqrt{4x^2 - 25}} \, dx = \int \frac{3}{5 \tan(\theta)} \cdot \frac{5 \sec(\theta) \tan(\theta)}{2} \, d\theta Simplify the expression: =32sec(θ)dθ= \frac{3}{2} \int \sec(\theta) \, d\theta

  4. Integrate:

    The integral of sec(θ)\sec(\theta) is: sec(θ)dθ=lnsec(θ)+tan(θ)+C\int \sec(\theta) \, d\theta = \ln|\sec(\theta) + \tan(\theta)| + C Therefore: 32sec(θ)dθ=32lnsec(θ)+tan(θ)+C\frac{3}{2} \int \sec(\theta) \, d\theta = \frac{3}{2} \ln|\sec(\theta) + \tan(\theta)| + C

  5. Back-substitute using sec(θ)=2x5\sec(\theta) = \frac{2x}{5} and tan(θ)=4x2255\tan(\theta) = \frac{\sqrt{4x^2 - 25}}{5}:

    Finally, we back-substitute to express everything in terms of xx. Using the relationships: sec(θ)=2x5,tan(θ)=4x2255\sec(\theta) = \frac{2x}{5}, \quad \tan(\theta) = \frac{\sqrt{4x^2 - 25}}{5} The solution becomes: 32ln2x5+4x2255+C\frac{3}{2} \ln\left| \frac{2x}{5} + \frac{\sqrt{4x^2 - 25}}{5} \right| + C

Thus, the integral is: 32ln2x+4x2255+C\boxed{\frac{3}{2} \ln\left| \frac{2x + \sqrt{4x^2 - 25}}{5} \right| + C}

Would you like a more detailed explanation of any of the steps? Or do you have additional questions?

Related questions:

  1. How do you handle integrals with square roots in the denominator?
  2. What other common trigonometric substitutions can simplify integrals?
  3. Can you use substitution to solve integrals with square roots of sums instead of differences?
  4. What is the relationship between the inverse trigonometric functions and integrals like these?
  5. How do you simplify more complex trigonometric integrals?

Tip: When you encounter square roots in integrals, check if the form matches any standard trigonometric substitution like a2x2b2\sqrt{a^2x^2 - b^2} or a2x2\sqrt{a^2 - x^2} to simplify the problem.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
Trigonometric Substitution

Formulas

\int \sec(\theta) d\theta = \ln|\sec(\theta) + \tan(\theta)| + C

Theorems

Trigonometric Substitution for Integrals

Suitable Grade Level

College Level