Math Problem Statement

Evaluate the integral ∫ x(x^2 + x + 1)^(-1/2) dx using Trigonometric Substitution.

Solution

The given integral is:

I=x(x2+x+1)12dxI = \int x \left( x^2 + x + 1 \right)^{-\frac{1}{2}} dx

We are asked to solve this using trigonometric substitution.

Step-by-Step Solution:

Step 1: Completing the square

The expression inside the square root x2+x+1x^2 + x + 1 can be rewritten by completing the square:

x2+x+1=(x+12)2+34x^2 + x + 1 = \left( x + \frac{1}{2} \right)^2 + \frac{3}{4}

So, the integral becomes:

I=x((x+12)2+34)12dxI = \int x \left( \left( x + \frac{1}{2} \right)^2 + \frac{3}{4} \right)^{-\frac{1}{2}} dx

Step 2: Trigonometric substitution

Next, we use the substitution for this type of expression. Set:

x+12=32tan(θ)x + \frac{1}{2} = \frac{\sqrt{3}}{2} \tan(\theta)

Thus, differentiating both sides:

dx=32sec2(θ)dθdx = \frac{\sqrt{3}}{2} \sec^2(\theta) d\theta

Substitute into the integral:

I=(32tan(θ)12)((32tan(θ))2+34)1232sec2(θ)dθI = \int \left( \frac{\sqrt{3}}{2} \tan(\theta) - \frac{1}{2} \right) \left( \left( \frac{\sqrt{3}}{2} \tan(\theta) \right)^2 + \frac{3}{4} \right)^{-\frac{1}{2}} \cdot \frac{\sqrt{3}}{2} \sec^2(\theta) d\theta

Simplify the expression under the square root:

(32tan(θ))2+34=34(tan2(θ)+1)=34sec2(θ)\left( \frac{\sqrt{3}}{2} \tan(\theta) \right)^2 + \frac{3}{4} = \frac{3}{4} \left( \tan^2(\theta) + 1 \right) = \frac{3}{4} \sec^2(\theta)

So the integral becomes:

I=(32tan(θ)12)(34sec2(θ))1232sec2(θ)dθI = \int \left( \frac{\sqrt{3}}{2} \tan(\theta) - \frac{1}{2} \right) \cdot \left( \frac{3}{4} \sec^2(\theta) \right)^{-\frac{1}{2}} \cdot \frac{\sqrt{3}}{2} \sec^2(\theta) d\theta

Since (34sec2(θ))12=231sec(θ)\left( \frac{3}{4} \sec^2(\theta) \right)^{-\frac{1}{2}} = \frac{2}{\sqrt{3}} \cdot \frac{1}{\sec(\theta)}, the integral simplifies further:

I=(32tan(θ)12)sec(θ)dθI = \int \left( \frac{\sqrt{3}}{2} \tan(\theta) - \frac{1}{2} \right) \sec(\theta) d\theta

Step 3: Break into two integrals

Now, distribute and break the integral into two parts:

I=32tan(θ)sec(θ)dθ12sec(θ)dθI = \frac{\sqrt{3}}{2} \int \tan(\theta) \sec(\theta) d\theta - \frac{1}{2} \int \sec(\theta) d\theta

  • The first integral tan(θ)sec(θ)dθ\int \tan(\theta) \sec(\theta) d\theta is straightforward:

tan(θ)sec(θ)dθ=sec(θ)\int \tan(\theta) \sec(\theta) d\theta = \sec(\theta)

  • The second integral sec(θ)dθ\int \sec(\theta) d\theta is a standard result:

sec(θ)dθ=lnsec(θ)+tan(θ)\int \sec(\theta) d\theta = \ln |\sec(\theta) + \tan(\theta)|

Step 4: Substitution back

Now, substituting back θ\theta in terms of xx:

Recall tan(θ)=23(x+12)\tan(\theta) = \frac{2}{\sqrt{3}} \left( x + \frac{1}{2} \right). Therefore:

sec(θ)=1+tan2(θ)=23x2+x+1\sec(\theta) = \sqrt{1 + \tan^2(\theta)} = \frac{2}{\sqrt{3}} \sqrt{x^2 + x + 1}

Thus, the final solution is a combination of these results:

I=32sec(θ)12lnsec(θ)+tan(θ)+CI = \frac{\sqrt{3}}{2} \sec(\theta) - \frac{1}{2} \ln |\sec(\theta) + \tan(\theta)| + C

This is the final answer. Would you like further explanation on any specific part of this process?

Related questions:

  1. How do you choose the right trigonometric substitution for an integral?
  2. What are the most common trigonometric substitutions for different forms?
  3. How does completing the square help simplify integrals?
  4. Can you explain how to simplify expressions like sec2(θ)\sec^2(\theta) after substitution?
  5. How do you revert back to xx after integrating in terms of θ\theta?

Tip:

Always remember to use the correct trigonometric identity when simplifying the integrand after substitution!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Substitution
Completing the Square
Integration Techniques

Formulas

Completing the square: x^2 + x + 1 = (x + 1/2)^2 + 3/4
Trigonometric substitution: x + 1/2 = (sqrt(3)/2)tan(θ)
Standard integrals: ∫sec(θ) dθ = ln|sec(θ) + tan(θ)|

Theorems

Trigonometric Identities
Integration by Substitution

Suitable Grade Level

Undergraduate