Math Problem Statement

∫(√x^2-1)dx

Solution

To solve the integral x21dx\int \sqrt{x^2 - 1} \, dx, we can use a trigonometric substitution. Here are the steps:

  1. Substitute: Let x=sec(θ)x = \sec(\theta). Then dx=sec(θ)tan(θ)dθdx = \sec(\theta) \tan(\theta) \, d\theta.

  2. Rewrite the integral: Substitute x=sec(θ)x = \sec(\theta) and dx=sec(θ)tan(θ)dθdx = \sec(\theta) \tan(\theta) \, d\theta: sec2(θ)1sec(θ)tan(θ)dθ\int \sqrt{\sec^2(\theta) - 1} \sec(\theta) \tan(\theta) \, d\theta

  3. Simplify the expression: Since sec2(θ)1=tan2(θ)\sec^2(\theta) - 1 = \tan^2(\theta), the integral becomes: tan2(θ)sec(θ)tan(θ)dθ\int \sqrt{\tan^2(\theta)} \sec(\theta) \tan(\theta) \, d\theta

    tan(θ)sec(θ)tan(θ)dθ\int |\tan(\theta)| \sec(\theta) \tan(\theta) \, d\theta

  4. Consider the absolute value: For θ\theta in the range where sec(θ)0\sec(\theta) \geq 0, tan(θ)0\tan(\theta) \geq 0. Thus, tan(θ)=tan(θ)|\tan(\theta)| = \tan(\theta): tan2(θ)sec(θ)dθ\int \tan^2(\theta) \sec(\theta) \, d\theta

  5. Use trigonometric identities: Recall that tan2(θ)=sec2(θ)1\tan^2(\theta) = \sec^2(\theta) - 1: (sec2(θ)1)sec(θ)dθ\int (\sec^2(\theta) - 1) \sec(\theta) \, d\theta

  6. Distribute: sec3(θ)dθsec(θ)dθ\int \sec^3(\theta) \, d\theta - \int \sec(\theta) \, d\theta

  7. Solve each integral:

    • The integral sec(θ)dθ=lnsec(θ)+tan(θ)+C\int \sec(\theta) \, d\theta = \ln |\sec(\theta) + \tan(\theta)| + C.

    • The integral sec3(θ)dθ\int \sec^3(\theta) \, d\theta can be solved using integration by parts or a reduction formula. Using the reduction formula, we get: sec3(θ)dθ=12sec(θ)tan(θ)+12lnsec(θ)+tan(θ)+C\int \sec^3(\theta) \, d\theta = \frac{1}{2} \sec(\theta) \tan(\theta) + \frac{1}{2} \ln |\sec(\theta) + \tan(\theta)| + C

  8. Combine the results: x21dx=12sec(θ)tan(θ)+12lnsec(θ)+tan(θ)lnsec(θ)+tan(θ)+C\int \sqrt{x^2 - 1} \, dx = \frac{1}{2} \sec(\theta) \tan(\theta) + \frac{1}{2} \ln |\sec(\theta) + \tan(\theta)| - \ln |\sec(\theta) + \tan(\theta)| + C

    x21dx=12sec(θ)tan(θ)12lnsec(θ)+tan(θ)+C\int \sqrt{x^2 - 1} \, dx = \frac{1}{2} \sec(\theta) \tan(\theta) - \frac{1}{2} \ln |\sec(\theta) + \tan(\theta)| + C

  9. Substitute back: Since x=sec(θ)x = \sec(\theta), we have: sec(θ)=xandtan(θ)=x21\sec(\theta) = x \quad \text{and} \quad \tan(\theta) = \sqrt{x^2 - 1}

    Therefore, the integral becomes: x21dx=12xx2112lnx+x21+C\int \sqrt{x^2 - 1} \, dx = \frac{1}{2} x \sqrt{x^2 - 1} - \frac{1}{2} \ln \left| x + \sqrt{x^2 - 1} \right| + C

So, the final answer is: x21dx=12xx2112lnx+x21+C\int \sqrt{x^2 - 1} \, dx = \frac{1}{2} x \sqrt{x^2 - 1} - \frac{1}{2} \ln \left| x + \sqrt{x^2 - 1} \right| + C

Would you like further details on any step or have any questions?

Here are some questions you might consider asking next:

  1. How do you use integration by parts?
  2. What is a reduction formula for trigonometric integrals?
  3. How can we handle absolute values in integrals?
  4. Can you explain trigonometric substitutions in integrals?
  5. What are some common integrals involving square roots?

Tip: When dealing with integrals involving square roots of quadratic expressions, trigonometric substitutions can simplify the integral significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Substitution
Definite Integral

Formulas

Trigonometric substitution formulas
Integration by parts formula

Theorems

-

Suitable Grade Level

Advanced Mathematics