Math Problem Statement
give step by step solution
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Calculus
Special Functions
Integration
Beta and Gamma Functions
Gaussian Integral
Formulas
\( \int_0^{\infty} e^{-a x^2} \, dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} \) (Gaussian integral formula)
Gamma function: \( \Gamma(n) = \int_0^{\infty} t^{n-1} e^{-t} \, dt \)
Theorems
Gamma Function Properties
Gaussian Integral Theorem
Suitable Grade Level
Undergraduate
Related Recommendation
Evaluate Integrals with Gamma and Beta Functions: Step-by-Step Solution
Evaluate the Integral \( \int_{0}^{\infty} 3^{-4x^2} \, dx \)
Using Beta and Gamma Functions to Solve ∫0∞(3−4*z^2)dz
Evaluate \( \int_0^\infty e^{-x^2} x^9 \, dx = 12 \) Using Gamma Function
Evaluate the Integral ∫₀⁺∞ e^(-x³) dx Using Gamma Function