Math Problem Statement

prove the ∫0∞​3^−4z2dz and ∫0∞​e^−h^2x^2dx using the Beta and Gamma functions give step by step solution

Solution

To solve these integrals using the Gamma function, we will use the following definitions and transformations:

  1. Gamma Function: Γ(s)=0ts1etdt\Gamma(s) = \int_0^{\infty} t^{s-1} e^{-t} \, dt
  2. Substitution: To transform the integrals into a form compatible with the Gamma function, we can use substitutions and properties of exponential expressions.

Let's go through each integral.


1. Solving 034z2dz\int_0^{\infty} 3^{-4z^2} \, dz

Step 1: Rewrite the Integral

Notice that 34z2=e(4ln3)z23^{-4z^2} = e^{-(4 \ln 3) z^2}. Therefore: 034z2dz=0e(4ln3)z2dz\int_0^{\infty} 3^{-4z^2} \, dz = \int_0^{\infty} e^{-(4 \ln 3) z^2} \, dz

Step 2: Use a Substitution

To match the form of the Gamma function, let u=(4ln3)z2u = (4 \ln 3) z^2, so z2=u4ln3z^2 = \frac{u}{4 \ln 3}. Then, dz=1214ln3ududz = \frac{1}{2} \frac{1}{\sqrt{4 \ln 3 \cdot u}} \, du, which simplifies to dz=124ln3duudz = \frac{1}{2 \sqrt{4 \ln 3}} \frac{du}{\sqrt{u}}.

This substitution gives: 0e(4ln3)z2dz=0eu124ln31udu\int_0^{\infty} e^{-(4 \ln 3) z^2} \, dz = \int_0^{\infty} e^{-u} \cdot \frac{1}{2 \sqrt{4 \ln 3}} \cdot \frac{1}{\sqrt{u}} \, du

Step 3: Simplify

This expression becomes: 124ln30u12eudu\frac{1}{2 \sqrt{4 \ln 3}} \int_0^{\infty} u^{-\frac{1}{2}} e^{-u} \, du

Step 4: Recognize the Gamma Function

Notice that this integral now matches the form of the Gamma function Γ(s)=0us1eudu\Gamma(s) = \int_0^{\infty} u^{s-1} e^{-u} \, du with s=12s = \frac{1}{2}: =124ln3Γ(12)= \frac{1}{2 \sqrt{4 \ln 3}} \Gamma\left(\frac{1}{2}\right)

Step 5: Use the Known Value of Γ(12)\Gamma\left(\frac{1}{2}\right)

It is known that Γ(12)=π\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}. So: 034z2dz=π24ln3=π22ln3=π4ln3\int_0^{\infty} 3^{-4z^2} \, dz = \frac{\sqrt{\pi}}{2 \sqrt{4 \ln 3}} = \frac{\sqrt{\pi}}{2 \cdot 2 \sqrt{\ln 3}} = \frac{\sqrt{\pi}}{4 \sqrt{\ln 3}}


2. Solving 0eh2x2dx\int_0^{\infty} e^{-h^2 x^2} \, dx

Step 1: Use a Substitution

To simplify this integral, let u=h2x2u = h^2 x^2, so x2=uh2x^2 = \frac{u}{h^2}. Then, dx=12hududx = \frac{1}{2h \sqrt{u}} \, du.

This gives: 0eh2x2dx=0eu12hudu\int_0^{\infty} e^{-h^2 x^2} \, dx = \int_0^{\infty} e^{-u} \cdot \frac{1}{2h \sqrt{u}} \, du

Step 2: Simplify the Integral

This expression becomes: 12h0u12eudu\frac{1}{2h} \int_0^{\infty} u^{-\frac{1}{2}} e^{-u} \, du

Step 3: Recognize the Gamma Function

Now the integral matches the form of the Gamma function with s=12s = \frac{1}{2}: =12hΓ(12)= \frac{1}{2h} \Gamma\left(\frac{1}{2}\right)

Step 4: Use the Known Value of Γ(12)\Gamma\left(\frac{1}{2}\right)

Since Γ(12)=π\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, we have: 0eh2x2dx=π2h\int_0^{\infty} e^{-h^2 x^2} \, dx = \frac{\sqrt{\pi}}{2h}


Final Answers

  1. 034z2dz=π4ln3\int_0^{\infty} 3^{-4z^2} \, dz = \frac{\sqrt{\pi}}{4 \sqrt{\ln 3}}
  2. 0eh2x2dx=π2h\int_0^{\infty} e^{-h^2 x^2} \, dx = \frac{\sqrt{\pi}}{2h}

Would you like additional details on any of the steps?


Related Questions

  1. How can the Beta function be used to solve integrals with different forms?
  2. What are the properties of the Gamma function that make it useful in evaluating integrals?
  3. How is the value of Γ(12)\Gamma\left(\frac{1}{2}\right) derived?
  4. Are there alternative methods to solve these integrals without using the Gamma function?
  5. What are some practical applications of the Gamma function in probability and statistics?

Tip:

The Gamma function Γ(s)\Gamma(s) is closely related to factorials, as Γ(n)=(n1)!\Gamma(n) = (n-1)! for a positive integer nn, making it a powerful tool for handling continuous cases where factorials are used in discrete mathematics.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Gamma Function
Beta Function
Substitution

Formulas

Gamma function: Γ(s) = ∫0∞ t^(s-1) e^(-t) dt
Substitution to match Gamma function: integral involving e^(-k x^2) for constants

Theorems

Gamma Function

Suitable Grade Level

Undergraduate Math or Calculus Level