Math Problem Statement

Evaluate \( \int_{0}^{\infty} 3^{-4x^2} \, dx \).

Solution

We are tasked to evaluate the integral:

034x2dx\int_{0}^{\infty} 3^{-4x^2} \, dx

Solution:

Let us rewrite the integrand using properties of exponents:

34x2=e4x2ln33^{-4x^2} = e^{-4x^2 \ln 3}

The integral becomes:

0e4x2ln3dx\int_{0}^{\infty} e^{-4x^2 \ln 3} \, dx

This is a Gaussian integral of the form:

0eax2dx=12πa,where a>0.\int_{0}^{\infty} e^{-a x^2} \, dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}, \quad \text{where } a > 0.

Here, a=4ln3a = 4 \ln 3. Applying the formula:

0e4x2ln3dx=12π4ln3\int_{0}^{\infty} e^{-4x^2 \ln 3} \, dx = \frac{1}{2} \sqrt{\frac{\pi}{4 \ln 3}}

Simplify:

034x2dx=12π4ln3=π24ln3=π4ln3.\int_{0}^{\infty} 3^{-4x^2} \, dx = \frac{1}{2} \cdot \frac{\sqrt{\pi}}{\sqrt{4 \ln 3}} = \frac{\sqrt{\pi}}{2 \sqrt{4 \ln 3}} = \frac{\sqrt{\pi}}{4 \sqrt{\ln 3}}.

Final Answer:

034x2dx=π4ln3.\int_{0}^{\infty} 3^{-4x^2} \, dx = \frac{\sqrt{\pi}}{4 \sqrt{\ln 3}}.

Would you like me to expand on any step?


Related Questions:

  1. How is the Gaussian integral formula derived?
  2. Why is 34x23^{-4x^2} rewritten using the natural logarithm ln3\ln 3?
  3. How does the property of exponents simplify complex expressions in integrals?
  4. What happens if the limits of integration change (e.g., from 0 to 1)?
  5. How can this integral be computed numerically?

Tip:

For integrals involving eax2e^{-ax^2}, always consider the Gaussian integral formula to simplify computations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Exponential Functions
Gaussian Integral

Formulas

Exponential property: \( a^b = e^{b \ln a} \)
Gaussian integral formula: \( \int_{0}^{\infty} e^{-a x^2} \, dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}, \text{ where } a > 0 \)

Theorems

Gaussian Integral Theorem

Suitable Grade Level

Undergraduate Mathematics