Math Problem Statement

x3\exponentialE4xdx\int x^3\exponentialE^{4x}dx

Solution

We are tasked with solving the integral:

x3e4xdx\int x^3 e^{4x} \, dx

To solve this, we will use integration by parts, which is based on the formula:

udv=uvvdu\int u \, dv = uv - \int v \, du

Step 1: Choose uu and dvdv

Let:

  • u=x3u = x^3 (we choose this because its derivative simplifies the expression)
  • dv=e4xdxdv = e^{4x} dx

Step 2: Differentiate and Integrate

Now, differentiate uu and integrate dvdv:

  • du=3x2dxdu = 3x^2 \, dx
  • v=e4x4v = \frac{e^{4x}}{4} (the integral of e4xe^{4x} is e4x4\frac{e^{4x}}{4})

Step 3: Apply the Integration by Parts Formula

Now, we apply the formula udv=uvvdu\int u \, dv = uv - \int v \, du:

x3e4xdx=(x3e4x4)(e4x43x2)dx\int x^3 e^{4x} \, dx = \left( x^3 \cdot \frac{e^{4x}}{4} \right) - \int \left( \frac{e^{4x}}{4} \cdot 3x^2 \right) dx =x3e4x434x2e4xdx= \frac{x^3 e^{4x}}{4} - \frac{3}{4} \int x^2 e^{4x} \, dx

Step 4: Repeat Integration by Parts for x2e4xdx\int x^2 e^{4x} \, dx

Next, we need to integrate x2e4xdx\int x^2 e^{4x} \, dx. We use integration by parts again:

  • Let u=x2u = x^2 and dv=e4xdxdv = e^{4x} dx
  • du=2xdxdu = 2x \, dx and v=e4x4v = \frac{e^{4x}}{4}

Applying the formula again:

x2e4xdx=(x2e4x4)(e4x42x)dx\int x^2 e^{4x} \, dx = \left( x^2 \cdot \frac{e^{4x}}{4} \right) - \int \left( \frac{e^{4x}}{4} \cdot 2x \right) dx =x2e4x424xe4xdx= \frac{x^2 e^{4x}}{4} - \frac{2}{4} \int x e^{4x} \, dx =x2e4x412xe4xdx= \frac{x^2 e^{4x}}{4} - \frac{1}{2} \int x e^{4x} \, dx

Step 5: Repeat Integration by Parts for xe4xdx\int x e^{4x} \, dx

Now, we handle xe4xdx\int x e^{4x} \, dx. Again using integration by parts:

  • Let u=xu = x and dv=e4xdxdv = e^{4x} dx
  • du=dxdu = dx and v=e4x4v = \frac{e^{4x}}{4}

xe4xdx=(xe4x4)(e4x41)dx\int x e^{4x} \, dx = \left( x \cdot \frac{e^{4x}}{4} \right) - \int \left( \frac{e^{4x}}{4} \cdot 1 \right) dx =xe4x414e4xdx= \frac{x e^{4x}}{4} - \frac{1}{4} \int e^{4x} \, dx =xe4x414e4x4= \frac{x e^{4x}}{4} - \frac{1}{4} \cdot \frac{e^{4x}}{4} =xe4x4e4x16= \frac{x e^{4x}}{4} - \frac{e^{4x}}{16}

Step 6: Substitute Back into the Original Expression

Now, substitute this result back into the previous equations: x2e4xdx=x2e4x412(xe4x4e4x16)\int x^2 e^{4x} \, dx = \frac{x^2 e^{4x}}{4} - \frac{1}{2} \left( \frac{x e^{4x}}{4} - \frac{e^{4x}}{16} \right) =x2e4x412xe4x4+132e4x= \frac{x^2 e^{4x}}{4} - \frac{1}{2} \cdot \frac{x e^{4x}}{4} + \frac{1}{32} e^{4x} =x2e4x4xe4x8+e4x32= \frac{x^2 e^{4x}}{4} - \frac{x e^{4x}}{8} + \frac{e^{4x}}{32}

Now substitute this into the equation for the integral of x3e4xx^3 e^{4x}: x3e4xdx=x3e4x434(x2e4x4xe4x8+e4x32)\int x^3 e^{4x} \, dx = \frac{x^3 e^{4x}}{4} - \frac{3}{4} \left( \frac{x^2 e^{4x}}{4} - \frac{x e^{4x}}{8} + \frac{e^{4x}}{32} \right) =x3e4x4316x2e4x+332xe4x3128e4x= \frac{x^3 e^{4x}}{4} - \frac{3}{16} x^2 e^{4x} + \frac{3}{32} x e^{4x} - \frac{3}{128} e^{4x}

Step 7: Final Answer

Thus, the integral is:

x3e4xdx=x3e4x43x2e4x16+3xe4x323e4x128+C\int x^3 e^{4x} \, dx = \frac{x^3 e^{4x}}{4} - \frac{3 x^2 e^{4x}}{16} + \frac{3 x e^{4x}}{32} - \frac{3 e^{4x}}{128} + C

Where CC is the constant of integration.


Would you like further details or clarifications on any of the steps?

Further Exploration:

  1. How does the integration by parts formula generalize to other functions?
  2. What happens if we apply a substitution method instead of integration by parts in this case?
  3. How can you solve integrals involving powers of xx and exponential functions efficiently?
  4. What is the role of the constant of integration in the final solution?
  5. Can we use this method to solve integrals with higher powers of xx?

Tip:

For integrals of the form xneaxdx\int x^n e^{ax} \, dx, repeated integration by parts is often necessary, and the general form will involve a series of decreasing powers of xx.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Exponential Functions
Integration by Parts

Formulas

Integration by parts formula: \int u \, dv = uv - \int v \, du
Standard integral of e^{ax}: \int e^{ax} dx = \frac{e^{ax}}{a}

Theorems

Integration by parts theorem

Suitable Grade Level

Grades 11-12