Math Problem Statement

 ⁣sin2xdx\int_{}^{}\!\sin^2x\,\mathrm{dx}

Solution

To solve the integral

sin2xdx,\int \sin^2 x \, dx,

we can use the identity for sin2x\sin^2 x:

sin2x=1cos(2x)2.\sin^2 x = \frac{1 - \cos(2x)}{2}.

Substituting this into the integral gives:

sin2xdx=1cos(2x)2dx.\int \sin^2 x \, dx = \int \frac{1 - \cos(2x)}{2} \, dx.

Now, we can split the integral:

=12(1cos(2x))dx=12(1dxcos(2x)dx).= \frac{1}{2} \int (1 - \cos(2x)) \, dx = \frac{1}{2} \left( \int 1 \, dx - \int \cos(2x) \, dx \right).

Calculating each integral:

  1. 1dx=x\int 1 \, dx = x.
  2. For cos(2x)dx\int \cos(2x) \, dx, we use the substitution u=2xu = 2x, du=2dxdu = 2dx, so dx=du2dx = \frac{du}{2}:

cos(2x)dx=12cos(u)du=12sin(u)+C=12sin(2x)+C.\int \cos(2x) \, dx = \frac{1}{2} \int \cos(u) \, du = \frac{1}{2} \sin(u) + C = \frac{1}{2} \sin(2x) + C.

Combining these results, we have:

sin2xdx=12(x12sin(2x))+C.\int \sin^2 x \, dx = \frac{1}{2} \left( x - \frac{1}{2} \sin(2x) \right) + C.

Thus, the final answer is:

sin2xdx=x214sin(2x)+C.\int \sin^2 x \, dx = \frac{x}{2} - \frac{1}{4} \sin(2x) + C.

If you have any questions or need further details, feel free to ask! Here are some related questions you might consider:

  1. What is the integral of cos2x\cos^2 x?
  2. How can we evaluate definite integrals involving sin2x\sin^2 x?
  3. What are the applications of integrals involving trigonometric functions?
  4. How does the substitution method work in integrals?
  5. Can you explain the derivation of the double angle formula for sine?

Tip: When dealing with trigonometric integrals, using identities can simplify the process significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
Trigonometric Functions

Formulas

sin^2 x = (1 - cos(2x))/2
∫ sin^2 x dx = (1/2)(x - (1/2)sin(2x)) + C

Theorems

Integration by substitution
Trigonometric identities

Suitable Grade Level

Grades 11-12