Math Problem Statement

integrate -2xsin^2(x)

Solution

To integrate the function 2xsin2(x)-2x \sin^2(x), we will apply the following steps:

Step 1: Use the trigonometric identity for sin2(x)\sin^2(x)

We can rewrite sin2(x)\sin^2(x) using the identity: sin2(x)=1cos(2x)2\sin^2(x) = \frac{1 - \cos(2x)}{2} So, the original integral becomes: 2xsin2(x)dx=2x1cos(2x)2dx\int -2x \sin^2(x) \, dx = \int -2x \cdot \frac{1 - \cos(2x)}{2} \, dx Simplifying: 2xsin2(x)dx=x(1cos(2x))dx\int -2x \sin^2(x) \, dx = \int -x (1 - \cos(2x)) \, dx

Step 2: Break the integral into two parts

Now, split the integral: x(1cos(2x))dx=xdx+xcos(2x)dx\int -x(1 - \cos(2x)) \, dx = \int -x \, dx + \int x \cos(2x) \, dx

Step 3: Solve each part

  1. First Integral: xdx\int -x \, dx xdx=x22\int -x \, dx = -\frac{x^2}{2}

  2. Second Integral: xcos(2x)dx\int x \cos(2x) \, dx

This requires integration by parts. Let:

  • u=xu = x, so du=dxdu = dx
  • dv=cos(2x)dxdv = \cos(2x) dx, so v=sin(2x)2v = \frac{\sin(2x)}{2}

Now, apply the integration by parts formula udv=uvvdu\int u dv = uv - \int v du: xcos(2x)dx=xsin(2x)2sin(2x)2dx\int x \cos(2x) \, dx = \frac{x \sin(2x)}{2} - \int \frac{\sin(2x)}{2} dx The remaining integral is: sin(2x)2dx=cos(2x)4\int \frac{\sin(2x)}{2} \, dx = -\frac{\cos(2x)}{4} Thus: xcos(2x)dx=xsin(2x)2+cos(2x)4\int x \cos(2x) \, dx = \frac{x \sin(2x)}{2} + \frac{\cos(2x)}{4}

Step 4: Combine results

Now, putting everything together: 2xsin2(x)dx=x22+(xsin(2x)2+cos(2x)4)+C\int -2x \sin^2(x) \, dx = -\frac{x^2}{2} + \left( \frac{x \sin(2x)}{2} + \frac{\cos(2x)}{4} \right) + C where CC is the constant of integration.

Thus, the final result is: x22+xsin(2x)2+cos(2x)4+C\boxed{-\frac{x^2}{2} + \frac{x \sin(2x)}{2} + \frac{\cos(2x)}{4} + C}

Would you like further clarification or more details on any step?

Relative Questions:

  1. How is the trigonometric identity for sin2(x)\sin^2(x) derived?
  2. Why is integration by parts necessary for xcos(2x)x \cos(2x)?
  3. Can integration by parts be applied in different orders for different results?
  4. How do we simplify sin(2x)dx\int \sin(2x) \, dx?
  5. What are the general strategies for integrating products of trigonometric and polynomial functions?

Tip:

When dealing with trigonometric integrals, using identities to simplify the expression before integration can often make the process easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Identities
Integration by Parts

Formulas

\sin^2(x) = \frac{1 - \cos(2x)}{2}
Integration by parts: \int u dv = uv - \int v du

Theorems

Trigonometric Identity for \sin^2(x)
Integration by Parts

Suitable Grade Level

College-Level Calculus