Math Problem Statement

Solve the integral \(\int e^{-2x} \cos(5x) \, dx\).

Solution

The integral provided in the image is:

e2xcos(5x)dx\int e^{-2x} \cos(5x) \, dx

To solve this, we can use integration by parts or recognize it as a standard integral for functions involving eaxcos(bx)e^{ax} \cos(bx).

General Formula

The integral of eaxcos(bx)e^{ax} \cos(bx) is given by:

eaxcos(bx)dx=eaxa2+b2(acos(bx)+bsin(bx))+C\int e^{ax} \cos(bx) \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos(bx) + b \sin(bx)) + C

Here:

  • a=2a = -2
  • b=5b = 5

Substituting a=2a = -2 and b=5b = 5:

e2xcos(5x)dx=e2x(2)2+52((2)cos(5x)+5sin(5x))+C\int e^{-2x} \cos(5x) \, dx = \frac{e^{-2x}}{(-2)^2 + 5^2} \big((-2) \cos(5x) + 5 \sin(5x)\big) + C

Simplifying:

e2xcos(5x)dx=e2x4+25((2)cos(5x)+5sin(5x))+C\int e^{-2x} \cos(5x) \, dx = \frac{e^{-2x}}{4 + 25} \big((-2) \cos(5x) + 5 \sin(5x)\big) + C

e2xcos(5x)dx=e2x29((2)cos(5x)+5sin(5x))+C\int e^{-2x} \cos(5x) \, dx = \frac{e^{-2x}}{29} \big((-2) \cos(5x) + 5 \sin(5x)\big) + C

Final Answer:

e2xcos(5x)dx=e2x29(2cos(5x)+5sin(5x))+C\int e^{-2x} \cos(5x) \, dx = \frac{e^{-2x}}{29} \big(-2 \cos(5x) + 5 \sin(5x)\big) + C

Let me know if you'd like further clarifications or more examples of this type of integral!

Related Questions:

  1. How can we derive the formula for eaxcos(bx)dx\int e^{ax} \cos(bx) \, dx using integration by parts?
  2. What happens if we replace cos(5x)\cos(5x) with sin(5x)\sin(5x)?
  3. Can this integral be solved using substitution techniques?
  4. What is the physical interpretation of such an integral in engineering contexts?
  5. How does the behavior of the function e2xcos(5x)e^{-2x} \cos(5x) change as xx \to \infty?

Tip:

Always check if the integrand matches a standard integral form; this can save significant time!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Exponential Functions
Trigonometric Functions

Formulas

\(\int e^{ax} \cos(bx) \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos(bx) + b \sin(bx)) + C\)

Theorems

Integration by Parts

Suitable Grade Level

Undergraduate - Calculus