Math Problem Statement

integrate e^(-5x) cos2xdx

Solution

To integrate e5xcos(2x)dxe^{-5x} \cos(2x) \, dx, we can use the method of integration by parts or apply a formula for integrating products of exponentials and trigonometric functions. A direct way is to use the formula for integrals of the form:

eaxcos(bx)dx=eaxa2+b2(acos(bx)+bsin(bx))+C\int e^{ax} \cos(bx) \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos(bx) + b \sin(bx)) + C

Here, a=5a = -5 and b=2b = 2. Plugging these values into the formula:

e5xcos(2x)dx=e5x(5)2+22(5cos(2x)+2sin(2x))+C\int e^{-5x} \cos(2x) \, dx = \frac{e^{-5x}}{(-5)^2 + 2^2} \left( -5 \cos(2x) + 2 \sin(2x) \right) + C

Simplifying:

e5xcos(2x)dx=e5x25+4(5cos(2x)+2sin(2x))+C\int e^{-5x} \cos(2x) \, dx = \frac{e^{-5x}}{25 + 4} \left( -5 \cos(2x) + 2 \sin(2x) \right) + C

e5xcos(2x)dx=e5x29(5cos(2x)+2sin(2x))+C\int e^{-5x} \cos(2x) \, dx = \frac{e^{-5x}}{29} \left( -5 \cos(2x) + 2 \sin(2x) \right) + C

This is the final result.

Would you like more details on integration by parts or this formula? Here are 5 related questions to expand on this:

  1. How do you apply integration by parts to this problem?
  2. What is the general solution to the integral of an exponential times a sine function?
  3. How would this change if the integral was e5xsin(2x)dxe^{-5x} \sin(2x) \, dx?
  4. What is the physical significance of this integral in engineering applications?
  5. Can you solve this problem using a different method?

Tip: Knowing standard integrals can save time and simplify complex calculations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
Exponential Functions
Trigonometric Functions

Formulas

\(\int e^{ax} \cos(bx) dx = \frac{e^{ax}}{a^2 + b^2} (a \cos(bx) + b \sin(bx)) + C\

Theorems

Integration of Exponential and Trigonometric Products

Suitable Grade Level

Undergraduate Calculus