Math Problem Statement

integrate 1/(x)(x^2 + 5) i can't put it as 1/(1/2*u) thn i bring the 1/(1/2) outside first? leaving me with integrating 1/u du?

Solution

Let's go step-by-step to solve the integral:

1x(x2+5)dx\int \frac{1}{x(x^2 + 5)} \, dx

Step 1: Use substitution

We can use partial fractions to simplify the integral. Let's first decompose the fraction.

  1. The expression 1x(x2+5)\frac{1}{x(x^2 + 5)} can be split into: Ax+Bx+Cx2+5\frac{A}{x} + \frac{Bx + C}{x^2 + 5} Multiply both sides by x(x2+5)x(x^2 + 5) to get: 1=A(x2+5)+(Bx+C)x1 = A(x^2 + 5) + (Bx + C)x Expanding: 1=A(x2)+5A+Bx2+Cx1 = A(x^2) + 5A + Bx^2 + Cx Group the terms: 1=(A+B)x2+Cx+5A1 = (A + B)x^2 + Cx + 5A Now, equate coefficients of powers of xx:

    • For x2x^2: A+B=0A + B = 0
    • For x1x^1: C=0C = 0
    • Constant: 5A=15A = 1

    From 5A=15A = 1, we get: A=15A = \frac{1}{5}

    From A+B=0A + B = 0, we get: B=15B = -\frac{1}{5}

    And C=0C = 0.

    So, the partial fraction decomposition is: 1x(x2+5)=1/5x1/5x2+5\frac{1}{x(x^2 + 5)} = \frac{1/5}{x} - \frac{1/5}{x^2 + 5}

Step 2: Integrate the two terms separately

Now we can integrate each term:

1x(x2+5)dx=151xdx151x2+5dx\int \frac{1}{x(x^2 + 5)} \, dx = \frac{1}{5} \int \frac{1}{x} \, dx - \frac{1}{5} \int \frac{1}{x^2 + 5} \, dx

  1. The first integral is straightforward: 151xdx=15lnx\frac{1}{5} \int \frac{1}{x} \, dx = \frac{1}{5} \ln |x|

  2. The second integral: 1x2+5dx\int \frac{1}{x^2 + 5} \, dx This is a standard form, where 1x2+a2dx=1atan1(xa)\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right).

    Here, a2=5a^2 = 5, so a=5a = \sqrt{5}: 1x2+5dx=15tan1(x5)\int \frac{1}{x^2 + 5} \, dx = \frac{1}{\sqrt{5}} \tan^{-1} \left( \frac{x}{\sqrt{5}} \right)

Step 3: Final answer

Now substitute back into the original expression:

1x(x2+5)dx=15lnx155tan1(x5)+C\int \frac{1}{x(x^2 + 5)} \, dx = \frac{1}{5} \ln |x| - \frac{1}{5 \sqrt{5}} \tan^{-1} \left( \frac{x}{\sqrt{5}} \right) + C

Summary:

The integral is:

1x(x2+5)dx=15lnx155tan1(x5)+C\int \frac{1}{x(x^2 + 5)} \, dx = \frac{1}{5} \ln |x| - \frac{1}{5 \sqrt{5}} \tan^{-1} \left( \frac{x}{\sqrt{5}} \right) + C


Would you like more details on any step or have any questions?

5 Related Questions:

  1. How does partial fraction decomposition work in more complex cases?
  2. Can we integrate this using substitution only instead of partial fractions?
  3. What is the geometric interpretation of the tan1\tan^{-1} term in integrals?
  4. How do we handle integrals of higher degree polynomials in the denominator?
  5. What other methods exist for solving rational function integrals?

Tip:

When dealing with tricky integrals involving rational functions, always check if partial fractions can simplify the process.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Partial Fractions
Trigonometric Substitution

Formulas

∫ 1/(x(x^2 + a^2)) dx
∫ 1/x dx = ln|x|
∫ 1/(x^2 + a^2) dx = (1/a) tan^(-1)(x/a)

Theorems

Partial Fraction Decomposition
Arctangent Integration Formula

Suitable Grade Level

Undergraduate Calculus