Math Problem Statement

Parçalara göre integral alma yöntemini kullanarak bu işlemi yap

Solution

To solve the integral cos1(x2)dx\int \cos^{-1}\left(\frac{x}{2}\right) dx using integration by parts, we need to set up the integral according to the integration by parts formula:

udv=uvvdu\int u \, dv = uv - \int v \, du

Let's choose: u=cos1(x2)anddv=dxu = \cos^{-1}\left(\frac{x}{2}\right) \quad \text{and} \quad dv = dx

Now, we need to find dudu and vv.

  1. Differentiate uu: u=cos1(x2)u = \cos^{-1}\left(\frac{x}{2}\right) du=ddx(cos1(x2))dxdu = \frac{d}{dx} \left( \cos^{-1}\left(\frac{x}{2}\right) \right) dx

Using the chain rule and the derivative of the inverse cosine function: ddxcos1(x)=11x2\frac{d}{dx} \cos^{-1}(x) = -\frac{1}{\sqrt{1 - x^2}} we get: du=11(x2)212dxdu = \frac{-1}{\sqrt{1 - \left(\frac{x}{2}\right)^2}} \cdot \frac{1}{2} dx du=121x24dxdu = \frac{-1}{2\sqrt{1 - \frac{x^2}{4}}} dx du=124x24dxdu = \frac{-1}{2\sqrt{\frac{4 - x^2}{4}}} dx du=14x2dxdu = \frac{-1}{\sqrt{4 - x^2}} dx

  1. Integrate dvdv: dv=dxdv = dx v=xv = x

Now, applying the integration by parts formula: cos1(x2)dx=xcos1(x2)x(14x2)dx\int \cos^{-1}\left(\frac{x}{2}\right) dx = x \cos^{-1}\left(\frac{x}{2}\right) - \int x \left( \frac{-1}{\sqrt{4 - x^2}} \right) dx =xcos1(x2)+x4x2dx= x \cos^{-1}\left(\frac{x}{2}\right) + \int \frac{x}{\sqrt{4 - x^2}} dx

To solve x4x2dx\int \frac{x}{\sqrt{4 - x^2}} dx, we can use a substitution. Let u=4x2u = 4 - x^2, then du=2xdxdu = -2x dx or du2=xdx\frac{du}{-2} = x dx.

So, x4x2dx=xudu2x\int \frac{x}{\sqrt{4 - x^2}} dx = \int \frac{x}{\sqrt{u}} \cdot \frac{du}{-2x} =121udu= -\frac{1}{2} \int \frac{1}{\sqrt{u}} du =12u12du= -\frac{1}{2} \int u^{-\frac{1}{2}} du =122u12= -\frac{1}{2} \cdot 2 u^{\frac{1}{2}} =u= -\sqrt{u} =4x2= -\sqrt{4 - x^2}

Combining the results: cos1(x2)dx=xcos1(x2)4x2+C\int \cos^{-1}\left(\frac{x}{2}\right) dx = x \cos^{-1}\left(\frac{x}{2}\right) - \sqrt{4 - x^2} + C

So the final answer is: cos1(x2)dx=xcos1(x2)4x2+C\int \cos^{-1}\left(\frac{x}{2}\right) dx = x \cos^{-1}\left(\frac{x}{2}\right) - \sqrt{4 - x^2} + C

Would you like more details or have any questions?

Here are 5 numbered questions you might ask next:

  1. How do you apply the substitution method in integrals?
  2. Can you explain the steps for integration by parts?
  3. What are some common integrals involving inverse trigonometric functions?
  4. How do you derive the formulas for the derivatives of inverse trigonometric functions?
  5. Can you solve another integral problem for me?

Tip: When using integration by parts, always choose uu and dvdv such that the resulting integral vdu\int v \, du is simpler than the original.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration by parts
Inverse trigonometric functions
Substitution method in integration

Formulas

Integration by parts formula: \( \int u \, dv = uv - \int v \, du \)
Derivative of inverse cosine: \( \frac{d}{dx} \cos^{-1}(x) = -\frac{1}{\sqrt{1 - x^2}} \)

Theorems

-

Suitable Grade Level

Advanced undergraduate level