Math Problem Statement

Integral xsin(x/2)dx by IBP

Solution

To solve the integral xsin(x2)dx\int x \sin\left(\frac{x}{2}\right) \, dx using Integration by Parts (IBP), we follow these steps:

Step 1: Identify parts for Integration by Parts (IBP)

Recall that Integration by Parts is given by: udv=uvvdu\int u \, dv = uv - \int v \, du For the integral xsin(x2)dx\int x \sin\left(\frac{x}{2}\right) \, dx, we choose:

  • u=xu = x (since its derivative simplifies)
  • dv=sin(x2)dxdv = \sin\left(\frac{x}{2}\right) dx (which we will integrate)

Step 2: Compute dudu and vv

Differentiate uu and integrate dvdv: du=dxdu = dx v=sin(x2)dxv = \int \sin\left(\frac{x}{2}\right) dx To integrate vv, let’s compute sin(x2)dx\int \sin\left(\frac{x}{2}\right) dx:

  • Use substitution: Let w=x2w = \frac{x}{2}, hence dw=12dxdw = \frac{1}{2} dx. sin(x2)dx=2sin(w)dw=2cos(w)+C=2cos(x2)\int \sin\left(\frac{x}{2}\right) dx = 2 \int \sin(w) dw = -2 \cos(w) + C = -2 \cos\left(\frac{x}{2}\right) So, v=2cos(x2)v = -2 \cos\left(\frac{x}{2}\right).

Step 3: Apply the Integration by Parts formula

Now, apply the formula: xsin(x2)dx=uvvdu\int x \sin\left(\frac{x}{2}\right) \, dx = u \cdot v - \int v \, du Substitute the values of uu, vv, and dudu: xsin(x2)dx=x(2cos(x2))(2cos(x2))dx\int x \sin\left(\frac{x}{2}\right) \, dx = x \cdot \left(-2 \cos\left(\frac{x}{2}\right)\right) - \int \left(-2 \cos\left(\frac{x}{2}\right)\right) \, dx Simplify: =2xcos(x2)+2cos(x2)dx= -2x \cos\left(\frac{x}{2}\right) + 2 \int \cos\left(\frac{x}{2}\right) \, dx

Step 4: Integrate the remaining integral

Integrate cos(x2)dx\int \cos\left(\frac{x}{2}\right) \, dx:

  • Using the same substitution w=x2w = \frac{x}{2}, dw=12dxdw = \frac{1}{2} dx: cos(x2)dx=2cos(w)dw=2sin(w)+C=2sin(x2)\int \cos\left(\frac{x}{2}\right) dx = 2 \int \cos(w) dw = 2 \sin(w) + C = 2 \sin\left(\frac{x}{2}\right) So the remaining integral is: 2cos(x2)dx=4sin(x2)2 \int \cos\left(\frac{x}{2}\right) dx = 4 \sin\left(\frac{x}{2}\right)

Step 5: Write the final answer

Combining all parts: xsin(x2)dx=2xcos(x2)+4sin(x2)+C\int x \sin\left(\frac{x}{2}\right) \, dx = -2x \cos\left(\frac{x}{2}\right) + 4 \sin\left(\frac{x}{2}\right) + C where CC is the constant of integration.

Would you like any details on these steps, or do you have any questions?

Here are 5 related questions for further practice:

  1. Integrate xcos(x2)dx\int x \cos\left(\frac{x}{2}\right) \, dx using Integration by Parts.
  2. Evaluate xex2dx\int x e^{\frac{x}{2}} \, dx using Integration by Parts.
  3. Solve the integral x2sin(x)dx\int x^2 \sin\left(x\right) \, dx using Integration by Parts.
  4. Integrate sin(x3)dx\int \sin\left(\frac{x}{3}\right) \, dx using substitution.
  5. Find the integral x2exdx\int x^2 e^{x} \, dx using Integration by Parts.

Tip: When applying Integration by Parts, always aim to simplify the integrand with your choice of uu and dvdv.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Integration by Parts
Trigonometric Integrals

Formulas

Integration by Parts formula: \( \int u \, dv = uv - \int v \, du \)

Theorems

-

Suitable Grade Level

Advanced Undergraduate