Math Problem Statement

integrate cot(x)ln(sinx)

Solution

We need to evaluate the integral:

I=cot(x)ln(sinx)dxI = \int \cot(x) \ln(\sin x) \, dx

Step 1: Express cot(x)\cot(x) in terms of sin(x)\sin(x) and cos(x)\cos(x)

We use the identity:

cot(x)=cos(x)sin(x)\cot(x) = \frac{\cos(x)}{\sin(x)}

Thus, the integral becomes:

I=cos(x)sin(x)ln(sinx)dxI = \int \frac{\cos(x)}{\sin(x)} \ln(\sin x) \, dx

Step 2: Use Substitution

Let:

u=sin(x)du=cos(x)dxu = \sin(x) \Rightarrow du = \cos(x) dx

Rewriting the integral in terms of uu:

I=duulnuI = \int \frac{du}{u} \ln u

Step 3: Solve the Integral

The integral:

lnuudu\int \frac{\ln u}{u} \, du

is a standard result:

(lnu)22+C\frac{(\ln u)^2}{2} + C

Step 4: Substitute Back u=sinxu = \sin x

I=(lnsinx)22+CI = \frac{(\ln \sin x)^2}{2} + C

Final Answer:

cot(x)ln(sinx)dx=(lnsinx)22+C\int \cot(x) \ln(\sin x) \, dx = \frac{(\ln \sin x)^2}{2} + C


Would you like a detailed explanation for any step?

Here are some related integrals you might find interesting:

  1. tan(x)ln(cosx)dx\int \tan(x) \ln(\cos x) \, dx
  2. ln(sinx)dx\int \ln(\sin x) \, dx
  3. ln(cosx)dx\int \ln(\cos x) \, dx
  4. cot2(x)ln(sinx)dx\int \cot^2(x) \ln(\sin x) \, dx
  5. cot(x)dx\int \cot(x) \, dx

Tip: The substitution u=sin(x)u = \sin(x) is very useful for integrals involving trigonometric functions and logarithms!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometry
Logarithmic Functions

Formulas

cot(x) = cos(x)/sin(x)
Substitution: u = sin(x), du = cos(x) dx
Integral of ln(u)/u du = (ln(u))^2 / 2 + C

Theorems

Substitution method for integrals
Standard integral for ln(u)/u

Suitable Grade Level

College Level