Math Problem Statement

integrate cotxln(sinx)

Solution

We need to evaluate the integral:
I=cotxln(sinx)dxI = \int \cot x \ln(\sin x) \, dx

Step 1: Express cotx\cot x in Terms of sinx\sin x and cosx\cos x

We know that
cotx=cosxsinx\cot x = \frac{\cos x}{\sin x} Thus, rewriting the integral:

I=cosxsinxln(sinx)dxI = \int \frac{\cos x}{\sin x} \ln(\sin x) \, dx

Step 2: Substituting u=sinxu = \sin x

Let u=sinxu = \sin x, so that du=cosxdxdu = \cos x \, dx. Then, the integral transforms into:

I=duulnuI = \int \frac{du}{u} \ln u

Step 3: Solve the Integral Using Integration by Parts

Using integration by parts, where we set:

  • v=lnudv=duuv = \ln u \Rightarrow dv = \frac{du}{u}
  • w=udw=duw = u \Rightarrow dw = du

Applying the formula:

vdw=vwwdv\int v \, dw = vw - \int w \, dv

we get:

I=ulnuuduuI = u \ln u - \int u \cdot \frac{du}{u}

Since du=u\int du = u, we simplify:

I=ulnuu+CI = u \ln u - u + C

Step 4: Substitute Back u=sinxu = \sin x

I=sinxln(sinx)sinx+CI = \sin x \ln (\sin x) - \sin x + C

Thus, the final answer is:

cotxln(sinx)dx=sinxln(sinx)sinx+C.\int \cot x \ln(\sin x) \, dx = \sin x \ln (\sin x) - \sin x + C.


Would you like a deeper explanation of any step?

Related Problems:

  1. Evaluate cotxln(cosx)dx\int \cot x \ln(\cos x) \, dx.
  2. Compute tanxln(sinx)dx\int \tan x \ln(\sin x) \, dx.
  3. Solve xlnxdx\int x \ln x \, dx using integration by parts.
  4. Find ln(sinx)dx\int \ln(\sin x) \, dx.
  5. Compute cosxln(sinx)dx\int \cos x \ln(\sin x) \, dx.

Tip:

When dealing with logarithms inside an integral, substitution and integration by parts are often useful techniques.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Functions
Logarithmic Functions
Integration by Parts

Formulas

cot(x) = cos(x) / sin(x)
Integration by Parts: ∫v dw = vw - ∫w dv
∫(u ln(u)) du = u ln(u) - u

Theorems

Integration by Parts

Suitable Grade Level

Grades 11-12