Math Problem Statement

Choose the correct answer

Evaluate the integral ∫ (1 / √(cosh(x) - 1)) dx and choose the correct answer from the given options.

Solution

The image shows a problem asking to evaluate the integral:

1coshx1dx\int \frac{1}{\sqrt{\cosh{x} - 1}} \, dx

The possible answers involve hyperbolic functions, logarithms, and constant terms. Here are the choices:

  • a. 12ln\cschx2+cothx2\frac{1}{\sqrt{2}} \ln \left| \csch \frac{x}{2} + \coth \frac{x}{2} \right|
  • b. 12ln\cschx2cothx2\frac{1}{\sqrt{2}} \ln \left| \csch \frac{x}{2} - \coth \frac{x}{2} \right|
  • c. 12ln\cschx2+cothx2\frac{1}{\sqrt{2}} \ln \left| \csch \frac{x}{2} + \coth \frac{x}{2} \right|
  • d. 12ln\cschx2cothx2\frac{1}{\sqrt{2}} \ln \left| \csch \frac{x}{2} - \coth \frac{x}{2} \right|

Solution outline:

  1. Rewrite coshx1\cosh{x} - 1: Using the identity coshx1=2sinh2(x2)\cosh{x} - 1 = 2\sinh^2{\left(\frac{x}{2}\right)}, the integral becomes:

    12sinh2(x2)dx=12\csch(x2)dx\int \frac{1}{\sqrt{2\sinh^2{\left(\frac{x}{2}\right)}}} \, dx = \frac{1}{\sqrt{2}} \int \csch{\left(\frac{x}{2}\right)} \, dx

  2. Solve the integral: The integral of \csch(x2)\csch{\left(\frac{x}{2}\right)} is known to be:

    ln\cschx2+cothx2\ln \left| \csch \frac{x}{2} + \coth \frac{x}{2} \right|

  3. Final answer: Therefore, the correct answer is:

    a.12ln\cschx2+cothx2\boxed{a. \frac{1}{\sqrt{2}} \ln \left| \csch \frac{x}{2} + \coth \frac{x}{2} \right|}


Would you like further explanation on any step?

Here are 5 related questions for further exploration:

  1. What is the relationship between hyperbolic and trigonometric functions?
  2. How does the substitution method simplify integrals involving hyperbolic functions?
  3. What are some common integrals of hyperbolic functions?
  4. Can \csch(x)\csch(x) and coth(x)\coth(x) be expressed in terms of exponentials?
  5. What are the key differences between cosh(x)\cosh(x) and sinh(x)\sinh(x) in integration problems?

Tip: When dealing with hyperbolic integrals, always check for identities that simplify the expression.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Hyperbolic Functions
Integration
Logarithms

Formulas

cosh(x) - 1 = 2sinh^2(x/2)
∫ csch(x/2) dx = ln |csch(x/2) + coth(x/2)|

Theorems

Hyperbolic Function Identities
Integral of csch(x)

Suitable Grade Level

University Level (Calculus)