Math Problem Statement

Evaluate the integral \(\int_0^1 \frac{\cosh^{-1}(\sqrt{x})}{\sqrt{x^2 - x}} \, dx\).

Solution

The given integral is:

01cosh1(x)x2xdx.\int_0^1 \frac{\cosh^{-1}(\sqrt{x})}{\sqrt{x^2 - x}} \, dx.

Let us proceed to evaluate it step-by-step.

Step 1: Simplify the integrand

The inverse hyperbolic cosine function, cosh1(z)\cosh^{-1}(z), satisfies the identity:

cosh1(z)=ln(z+z21),\cosh^{-1}(z) = \ln(z + \sqrt{z^2 - 1}),

for z1z \geq 1. Here, x\sqrt{x} is the argument, and it is valid since x[0,1]x \in [0, 1].

Also, the term x2x\sqrt{x^2 - x} can be factored as:

x2x=x(x1).\sqrt{x^2 - x} = \sqrt{x(x - 1)}.

Step 2: Variable substitution

To simplify the limits and integrand, substitute x=t2x = t^2, where t[0,1]t \in [0, 1]. Then:

dx=2tdtandx=t.dx = 2t \, dt \quad \text{and} \quad \sqrt{x} = t.

The integral becomes:

01cosh1(t)t4t22tdt.\int_0^1 \frac{\cosh^{-1}(t)}{\sqrt{t^4 - t^2}} \cdot 2t \, dt.

Step 3: Simplify further

Factor the denominator:

t4t2=t2(t21)=tt21.\sqrt{t^4 - t^2} = \sqrt{t^2(t^2 - 1)} = t \sqrt{t^2 - 1}.

Substitute this back:

01cosh1(t)tt212tdt=201cosh1(t)t21dt.\int_0^1 \frac{\cosh^{-1}(t)}{t \sqrt{t^2 - 1}} \cdot 2t \, dt = 2 \int_0^1 \frac{\cosh^{-1}(t)}{\sqrt{t^2 - 1}} \, dt.

Step 4: Further substitution for standard integral

Let t=cosh(u)t = \cosh(u), which implies dt=sinh(u)dudt = \sinh(u) \, du, and:

t21=cosh2(u)1=sinh(u).\sqrt{t^2 - 1} = \sqrt{\cosh^2(u) - 1} = \sinh(u).

The integral becomes:

201cosh1(cosh(u))sinh(u)sinh(u)du=201udu.2 \int_0^1 \frac{\cosh^{-1}(\cosh(u))}{\sinh(u)} \cdot \sinh(u) \, du = 2 \int_0^1 u \, du.

Step 5: Evaluate the integral

The final integral is straightforward:

201udu=2[u22]01=212=1.2 \int_0^1 u \, du = 2 \left[ \frac{u^2}{2} \right]_0^1 = 2 \cdot \frac{1}{2} = 1.

Final Answer:

1.\boxed{1}.

Would you like further clarification or details on any step?


Related Questions:

  1. What is the definition and domain of the inverse hyperbolic cosine function?
  2. How does the substitution x=t2x = t^2 simplify square root terms in integrals?
  3. What are some other common integrals involving inverse hyperbolic functions?
  4. Why is the substitution t=cosh(u)t = \cosh(u) useful for this integral?
  5. How do we verify the limits when making substitutions?

Tip: When dealing with inverse hyperbolic functions, their logarithmic representation can simplify evaluations significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Inverse Hyperbolic Functions
Substitution Method

Formulas

\(\cosh^{-1}(z) = \ln(z + \sqrt{z^2 - 1})\)
\(\sqrt{x^2 - x} = \sqrt{x(x - 1)}\)
Substitution: \(x = t^2\), \(t = \cosh(u)\)

Theorems

Logarithmic identity for inverse hyperbolic cosine

Suitable Grade Level

College Level