Math Problem Statement

integrate

Evaluate the integral \( \int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx \)

Solution

To solve the integral

0π2cos2xdx,\int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx,

we can use a trigonometric identity to simplify cos2x\cos^2 x.

Step 1: Use the Power-Reduction Formula

The identity for cos2x\cos^2 x is: cos2x=1+cos(2x)2.\cos^2 x = \frac{1 + \cos(2x)}{2}.

Step 2: Substitute the Identity into the Integral

This transforms the integral into: 0π2cos2xdx=0π21+cos(2x)2dx.\int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx = \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos(2x)}{2} \, dx.

We can factor out the 12\frac{1}{2}: =120π2(1+cos(2x))dx.= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 + \cos(2x)) \, dx.

Step 3: Split the Integral

Now, split the integral: =12(0π21dx+0π2cos(2x)dx).= \frac{1}{2} \left( \int_{0}^{\frac{\pi}{2}} 1 \, dx + \int_{0}^{\frac{\pi}{2}} \cos(2x) \, dx \right).

Step 4: Evaluate Each Integral Separately

  1. First Integral: 0π21dx=[x]0π2=π2.\int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2}.

  2. Second Integral: For 0π2cos(2x)dx\int_{0}^{\frac{\pi}{2}} \cos(2x) \, dx, use substitution. Let u=2xu = 2x, so du=2dxdu = 2 \, dx or dx=du2dx = \frac{du}{2}.

    Changing the limits:

    • When x=0x = 0, u=0u = 0.
    • When x=π2x = \frac{\pi}{2}, u=πu = \pi.

    The integral becomes: 0π2cos(2x)dx=0πcos(u)12du=120πcos(u)du.\int_{0}^{\frac{\pi}{2}} \cos(2x) \, dx = \int_{0}^{\pi} \cos(u) \cdot \frac{1}{2} \, du = \frac{1}{2} \int_{0}^{\pi} \cos(u) \, du.

    Now, integrate cos(u)\cos(u): 120πcos(u)du=12[sin(u)]0π=12(00)=0.\frac{1}{2} \int_{0}^{\pi} \cos(u) \, du = \frac{1}{2} \left[ \sin(u) \right]_{0}^{\pi} = \frac{1}{2} (0 - 0) = 0.

So, the second integral is zero.

Step 5: Combine Results

The integral now simplifies to: 0π2cos2xdx=12π2=π4.\int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}.

Final Answer

0π2cos2xdx=π4.\int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx = \frac{\pi}{4}.

Would you like more details on any specific part of the solution?

Related Questions

  1. How do we derive the power-reduction formula for trigonometric functions?
  2. Can we solve similar integrals for sin2x\sin^2 x over the same interval?
  3. What is the significance of using substitution in integrals with trigonometric functions?
  4. How would the result change if the limits of integration were different?
  5. What other techniques can we use to solve integrals involving cos2x\cos^2 x?

Tip

For integrals involving squares of trigonometric functions, the power-reduction identities are particularly useful to simplify the expression before integrating.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometry
Definite Integrals
Power-Reduction Formula

Formulas

\( \cos^2 x = \frac{1 + \cos(2x)}{2} \)

Theorems

Power-Reduction Identity

Suitable Grade Level

Grades 11-12