Math Problem Statement

integrate, simplify steps

Evaluate the integral \( \int_0^{\frac{\pi}{2}} \cos^2(x) \, dx \)

Solution

To evaluate the integral

0π2cos2(x)dx\int_0^{\frac{\pi}{2}} \cos^2(x) \, dx

we can simplify it by using a trigonometric identity.

Step 1: Use the Power-Reducing Identity

The identity for cos2(x)\cos^2(x) is: cos2(x)=1+cos(2x)2.\cos^2(x) = \frac{1 + \cos(2x)}{2}.

Step 2: Substitute in the Integral

Substituting cos2(x)\cos^2(x) with 1+cos(2x)2\frac{1 + \cos(2x)}{2}, we get: 0π2cos2(x)dx=0π21+cos(2x)2dx.\int_0^{\frac{\pi}{2}} \cos^2(x) \, dx = \int_0^{\frac{\pi}{2}} \frac{1 + \cos(2x)}{2} \, dx.

Step 3: Separate the Integral

This can be split into two integrals: 0π2cos2(x)dx=0π212dx+0π2cos(2x)2dx.\int_0^{\frac{\pi}{2}} \cos^2(x) \, dx = \int_0^{\frac{\pi}{2}} \frac{1}{2} \, dx + \int_0^{\frac{\pi}{2}} \frac{\cos(2x)}{2} \, dx.

Step 4: Evaluate Each Integral Separately

  1. First Integral: 0π212dx=120π21dx=12π2=π4.\int_0^{\frac{\pi}{2}} \frac{1}{2} \, dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} 1 \, dx = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}.

  2. Second Integral: 0π2cos(2x)2dx=120π2cos(2x)dx.\int_0^{\frac{\pi}{2}} \frac{\cos(2x)}{2} \, dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} \cos(2x) \, dx. To evaluate cos(2x)dx\int \cos(2x) \, dx, we use the antiderivative: cos(2x)dx=sin(2x)2.\int \cos(2x) \, dx = \frac{\sin(2x)}{2}. Applying the limits from 00 to π2\frac{\pi}{2}: 12[sin(2x)2]0π2=12(sin(π)2sin(0)2)=12(00)=0.\frac{1}{2} \cdot \left[ \frac{\sin(2x)}{2} \right]_0^{\frac{\pi}{2}} = \frac{1}{2} \cdot \left( \frac{\sin(\pi)}{2} - \frac{\sin(0)}{2} \right) = \frac{1}{2} \cdot (0 - 0) = 0.

Step 5: Combine Results

Thus, 0π2cos2(x)dx=π4+0=π4.\int_0^{\frac{\pi}{2}} \cos^2(x) \, dx = \frac{\pi}{4} + 0 = \frac{\pi}{4}.

Final Answer

0π2cos2(x)dx=π4.\int_0^{\frac{\pi}{2}} \cos^2(x) \, dx = \frac{\pi}{4}.

Would you like more details or have any questions?


  1. How would the result change if the limits of integration were different?
  2. How can you apply this power-reducing identity to sin2(x)\sin^2(x)?
  3. What if the integrand were sin2(x)+cos2(x)\sin^2(x) + \cos^2(x)?
  4. How would you evaluate cos2(x)sin(x)dx\int \cos^2(x) \sin(x) \, dx?
  5. Can you apply this method to find 02πcos2(x)dx\int_0^{2\pi} \cos^2(x) \, dx?

Tip: The power-reducing identities are particularly useful for integrals involving sin2(x)\sin^2(x) or cos2(x)\cos^2(x) over standard intervals, as they simplify the expression into terms that are easier to integrate.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Trigonometry
Integration
Definite Integrals

Formulas

Power-reducing identity: \( \cos^2(x) = \frac{1 + \cos(2x)}{2} \)
Antiderivative of \( \cos(2x) \): \( \int \cos(2x) \, dx = \frac{\sin(2x)}{2} \)

Theorems

-

Suitable Grade Level

College Calculus or Advanced High School Calculus