Math Problem Statement

Evaluate the integral \( \int_0^{\frac{\pi}{2}} \cos^2 x \, dx \).

Solution

To evaluate the integral

0π2cos2xdx,\int_0^{\frac{\pi}{2}} \cos^2 x \, dx,

we can use the trigonometric identity for cos2x\cos^2 x:

cos2x=1+cos(2x)2.\cos^2 x = \frac{1 + \cos(2x)}{2}.

Thus, we can rewrite the integral as:

0π2cos2xdx=0π21+cos(2x)2dx.\int_0^{\frac{\pi}{2}} \cos^2 x \, dx = \int_0^{\frac{\pi}{2}} \frac{1 + \cos(2x)}{2} \, dx.

This simplifies to:

0π2cos2xdx=120π2(1+cos(2x))dx.\int_0^{\frac{\pi}{2}} \cos^2 x \, dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 + \cos(2x)) \, dx.

Now we can split the integral:

=12(0π21dx+0π2cos(2x)dx).= \frac{1}{2} \left( \int_0^{\frac{\pi}{2}} 1 \, dx + \int_0^{\frac{\pi}{2}} \cos(2x) \, dx \right).

  1. First Integral:

    0π21dx=[x]0π2=π2.\int_0^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2}.

  2. Second Integral:

    0π2cos(2x)dx.\int_0^{\frac{\pi}{2}} \cos(2x) \, dx.

    To solve this, let’s find the antiderivative of cos(2x)\cos(2x):

    cos(2x)dx=sin(2x)2.\int \cos(2x) \, dx = \frac{\sin(2x)}{2}.

    Evaluating this from 00 to π2\frac{\pi}{2}:

    0π2cos(2x)dx=[sin(2x)2]0π2=sin(π)2sin(0)2=0.\int_0^{\frac{\pi}{2}} \cos(2x) \, dx = \left[ \frac{\sin(2x)}{2} \right]_0^{\frac{\pi}{2}} = \frac{\sin(\pi)}{2} - \frac{\sin(0)}{2} = 0.

Therefore, the integral simplifies to:

0π2cos2xdx=12(π2+0)=π4.\int_0^{\frac{\pi}{2}} \cos^2 x \, dx = \frac{1}{2} \left( \frac{\pi}{2} + 0 \right) = \frac{\pi}{4}.

Final Answer:

0π2cos2xdx=π4.\int_0^{\frac{\pi}{2}} \cos^2 x \, dx = \frac{\pi}{4}.

Would you like further details or have any questions?

Here are some related questions to explore:

  1. How can we solve integrals involving sin2x\sin^2 x in a similar way?
  2. What is the integral of cos2x\cos^2 x over a different interval, like from 00 to π\pi?
  3. Can we use a different identity to evaluate (\int \cos^2

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Definite Integrals

Formulas

\( \cos^2 x = \frac{1 + \cos(2x)}{2} \)

Theorems

Basic integration rules
Trigonometric identities

Suitable Grade Level

Grade 11-12