Math Problem Statement

1/4)*integral(12to16)61+10sin((pi(t-11))/12))

Solution

Let's break down and solve the given integral:

The integral is:

141216(61+10sin(π(t11)12))dt\frac{1}{4} \int_{12}^{16} \left( 61 + 10 \sin\left( \frac{\pi(t - 11)}{12} \right) \right) \, dt

Step 1: Split the integral

We can split the integral into two parts:

141216(61)dt+141216(10sin(π(t11)12))dt\frac{1}{4} \int_{12}^{16} \left( 61 \right) \, dt + \frac{1}{4} \int_{12}^{16} \left( 10 \sin\left( \frac{\pi(t - 11)}{12} \right) \right) \, dt

Step 2: Evaluate the first part

The first integral is:

14121661dt\frac{1}{4} \int_{12}^{16} 61 \, dt

Since 6161 is a constant:

14×61×(1612)=14×61×4=61\frac{1}{4} \times 61 \times (16 - 12) = \frac{1}{4} \times 61 \times 4 = 61

Step 3: Evaluate the second part

The second integral is:

14121610sin(π(t11)12)dt\frac{1}{4} \int_{12}^{16} 10 \sin\left( \frac{\pi(t - 11)}{12} \right) \, dt

First, take the constant 1010 outside the integral:

1041216sin(π(t11)12)dt=521216sin(π(t11)12)dt\frac{10}{4} \int_{12}^{16} \sin\left( \frac{\pi(t - 11)}{12} \right) \, dt = \frac{5}{2} \int_{12}^{16} \sin\left( \frac{\pi(t - 11)}{12} \right) \, dt

Now, let’s perform a substitution. Set:

u=π(t11)12sodu=π12dtordt=12πduu = \frac{\pi(t - 11)}{12} \quad \text{so} \quad du = \frac{\pi}{12} dt \quad \text{or} \quad dt = \frac{12}{\pi} du

When t=12t = 12, u=π12u = \frac{\pi}{12}, and when t=16t = 16, u=5π12u = \frac{5\pi}{12}.

Thus, the integral becomes:

52×12ππ125π12sin(u)du\frac{5}{2} \times \frac{12}{\pi} \int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} \sin(u) \, du

The integral of sin(u)\sin(u) is cos(u)-\cos(u):

[ \frac{5}{2} \times \frac{12}{\pi} \left[ -\cos(u) \right]_{\frac{\pi}{12}}^{\frac{5\pi}{12}} = -\frac{30}{\pi} \left[ \cos\left( \frac{5\pi}{12} \right) - \cos\left( \frac{\pi}{12} \right) \right] ]

Step 4: Compute the values of cosine

We can now compute the values of cos(5π12)\cos\left( \frac{5\pi}{12} \right) and cos(π12)\cos\left( \frac{\pi}{12} \right). Using known trigonometric values:

cos(5π12)0.2588,cos(π12)0.9659\cos\left( \frac{5\pi}{12} \right) \approx -0.2588, \quad \cos\left( \frac{\pi}{12} \right) \approx 0.9659

Thus, the difference is:

cos(5π12)cos(π12)=0.25880.9659=1.2247\cos\left( \frac{5\pi}{12} \right) - \cos\left( \frac{\pi}{12} \right) = -0.2588 - 0.9659 = -1.2247

Step 5: Final calculation

Now substitute this back into the expression:

30π×(1.2247)30×1.22473.141636.7413.141611.7-\frac{30}{\pi} \times (-1.2247) \approx \frac{30 \times 1.2247}{3.1416} \approx \frac{36.741}{3.1416} \approx 11.7

Step 6: Combine both results

Now, adding the two parts together:

61+11.7=72.761 + 11.7 = 72.7

Thus, the value of the integral is approximately 72.7.


Would you like more details on any specific step? Here are some follow-up questions that might help you understand this better:

  1. How does the substitution method work in integrals?
  2. What is the role of trigonometric identities in integral calculations?
  3. Why do we separate constants from variable terms in an integral?
  4. Can integrals always be solved using substitution?
  5. How can we calculate cosine values without a calculator?

Tip: Remember, substitution is a powerful technique for simplifying integrals when the argument of a function is complex.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Functions
Substitution Method

Formulas

Integral of a constant: ∫ a dt = a * t
Integral of sine: ∫ sin(u) du = -cos(u)
Substitution: u = (π(t - 11)) / 12

Theorems

Fundamental Theorem of Calculus
Substitution Rule for Integrals

Suitable Grade Level

Undergraduate (Calculus I or II)