Math Problem Statement

Evaluate the integral: ∫₀^(π/4) 6 sec^3(x) dx

Solution

The integral to evaluate is:

0π46sec3(x)dx\int_0^{\frac{\pi}{4}} 6 \sec^3(x) \, dx

To solve this, we'll break it down step by step. The integral of sec3(x)\sec^3(x) is not straightforward, but we can use a standard reduction formula. The formula for the integral of sec3(x)\sec^3(x) is:

sec3(x)dx=12sec(x)tan(x)+12lnsec(x)+tan(x)+C\int \sec^3(x) \, dx = \frac{1}{2} \sec(x) \tan(x) + \frac{1}{2} \ln |\sec(x) + \tan(x)| + C

So, applying this to the given integral:

60π4sec3(x)dx=6[12sec(x)tan(x)+12lnsec(x)+tan(x)]0π46 \int_0^{\frac{\pi}{4}} \sec^3(x) \, dx = 6 \left[ \frac{1}{2} \sec(x) \tan(x) + \frac{1}{2} \ln |\sec(x) + \tan(x)| \right]_0^{\frac{\pi}{4}}

Step 1: Evaluate at x=π4x = \frac{\pi}{4}

At x=π4x = \frac{\pi}{4}, we have: sec(π4)=2,tan(π4)=1\sec\left(\frac{\pi}{4}\right) = \sqrt{2}, \quad \tan\left(\frac{\pi}{4}\right) = 1 Substitute into the expression: 12sec(π4)tan(π4)=12×2×1=22\frac{1}{2} \sec\left(\frac{\pi}{4}\right) \tan\left(\frac{\pi}{4}\right) = \frac{1}{2} \times \sqrt{2} \times 1 = \frac{\sqrt{2}}{2} 12lnsec(π4)+tan(π4)=12ln(2+1)\frac{1}{2} \ln\left|\sec\left(\frac{\pi}{4}\right) + \tan\left(\frac{\pi}{4}\right)\right| = \frac{1}{2} \ln(\sqrt{2} + 1)

Step 2: Evaluate at x=0x = 0

At x=0x = 0, we have: sec(0)=1,tan(0)=0\sec(0) = 1, \quad \tan(0) = 0 Substitute into the expression: 12sec(0)tan(0)=12×1×0=0\frac{1}{2} \sec(0) \tan(0) = \frac{1}{2} \times 1 \times 0 = 0 12lnsec(0)+tan(0)=12ln(1+0)=12ln(1)=0\frac{1}{2} \ln\left|\sec(0) + \tan(0)\right| = \frac{1}{2} \ln(1 + 0) = \frac{1}{2} \ln(1) = 0

Step 3: Combine the results

Now, we subtract the values at x=0x = 0 from the values at x=π4x = \frac{\pi}{4}: 6(22+12ln(2+1)0)=32+3ln(2+1)6 \left( \frac{\sqrt{2}}{2} + \frac{1}{2} \ln(\sqrt{2} + 1) - 0 \right) = 3\sqrt{2} + 3 \ln(\sqrt{2} + 1)

Thus, the final answer is: 32+3ln(2+1)\boxed{3\sqrt{2} + 3 \ln(\sqrt{2} + 1)}

Would you like any further details or clarification on the steps?

Here are 5 related questions you might find helpful:

  1. How do you integrate secn(x)\sec^n(x) for different values of nn?
  2. What are the properties of the secant and tangent functions in integrals?
  3. How can you use reduction formulas for more complex trigonometric integrals?
  4. Why do logarithmic functions appear in the integration of sec3(x)\sec^3(x)?
  5. How do definite integrals differ from indefinite integrals in terms of evaluation?

Tip: For integrals involving powers of secant, memorizing the reduction formulas for powers like sec3(x)\sec^3(x) can save time!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Functions

Formulas

∫ sec^3(x) dx = (1/2) sec(x) tan(x) + (1/2) ln |sec(x) + tan(x)| + C
Definite integral evaluation

Theorems

Trigonometric Integral Reduction Formula

Suitable Grade Level

Undergraduate Calculus