Math Problem Statement

do integral 0 to pi/4 of sec^3theta dtheta

Solution

To evaluate the integral

I=0π/4sec3θdθ,I = \int_{0}^{\pi/4} \sec^3 \theta \, d\theta,

we use the standard formula for the integral of sec3θ\sec^3 \theta:

sec3θdθ=12secθtanθ+12lnsecθ+tanθ+C.\int \sec^3 \theta \, d\theta = \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln |\sec \theta + \tan \theta| + C.

Step-by-step solution:

  1. Apply the formula for sec3θ\sec^3 \theta: sec3θdθ=12secθtanθ+12lnsecθ+tanθ.\int \sec^3 \theta \, d\theta = \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln |\sec \theta + \tan \theta|.

  2. Evaluate at the bounds θ=0\theta = 0 and θ=π4\theta = \frac{\pi}{4}.

At θ=π4\theta = \frac{\pi}{4}:

  • secπ4=2\sec \frac{\pi}{4} = \sqrt{2},
  • tanπ4=1\tan \frac{\pi}{4} = 1.

Thus:

= \frac{1}{2} (\sqrt{2} \cdot 1) + \frac{1}{2} \ln |\sqrt{2} + 1|.$$ This simplifies to: $$\frac{\sqrt{2}}{2} + \frac{1}{2} \ln (\sqrt{2} + 1).$$ #### At $$\theta = 0$$: - $$\sec 0 = 1$$, - $$\tan 0 = 0$$. Thus: $$\frac{1}{2} \sec 0 \tan 0 + \frac{1}{2} \ln |\sec 0 + \tan 0| = 0 + \frac{1}{2} \ln 1 = 0.$$ 3. Subtract the results at the bounds: $$I = \left[\frac{\sqrt{2}}{2} + \frac{1}{2} \ln (\sqrt{2} + 1)\right] - 0.$$ ### Final Answer: $$I = \frac{\sqrt{2}}{2} + \frac{1}{2} \ln (\sqrt{2} + 1).$$ Let me know if you'd like further clarification or details! --- ### Related Questions: 1. What is the indefinite integral of $$\sec^3 \theta$$? 2. How do you compute the integral of $$\sec^2 \theta$$? 3. Can you derive the formula for $$\int \sec^3 \theta \, d\theta$$ from scratch? 4. How does the logarithmic term arise in the integral of $$\sec^3 \theta$$? 5. What are other common integrals involving secant functions? ### Tip: When working with integrals of secant powers, always check if reducing the power simplifies the computation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Definite Integrals
Trigonometric Functions

Formulas

Integral of sec^3θ: (1/2)secθtanθ + (1/2)ln|secθ + tanθ| + C

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12