Math Problem Statement

integral from 0 to pi/4 sec^2x/(1-9tan^2x)

Solution

We are tasked with evaluating the integral:

I=0π/4sec2x19tan2xdxI = \int_{0}^{\pi/4} \frac{\sec^2 x}{1 - 9\tan^2 x} \, dx

Step-by-step solution:

  1. Substitution: Let: u=tanxdu=sec2xdx.u = \tan x \quad \Rightarrow \quad du = \sec^2 x \, dx. The limits change as follows:

    • When x=0x = 0, u=tan0=0u = \tan 0 = 0,
    • When x=π/4x = \pi/4, u=tan(π/4)=1u = \tan(\pi/4) = 1.

    The integral becomes: I=01119u2du.I = \int_{0}^{1} \frac{1}{1 - 9u^2} \, du.

  2. Simplify the integrand: The term 119u2\frac{1}{1 - 9u^2} is a standard form of a partial fraction decomposition. Notice that: 19u2=(13u)(1+3u).1 - 9u^2 = (1 - 3u)(1 + 3u). Using partial fractions: 119u2=A13u+B1+3u.\frac{1}{1 - 9u^2} = \frac{A}{1 - 3u} + \frac{B}{1 + 3u}. Solving for AA and BB, we get: A=16,B=16.A = \frac{1}{6}, \quad B = \frac{-1}{6}.

    Thus: 119u2=16(13u)16(1+3u).\frac{1}{1 - 9u^2} = \frac{1}{6(1 - 3u)} - \frac{1}{6(1 + 3u)}.

  3. Rewrite the integral: Substitute the partial fractions into the integral: I=01[16(13u)16(1+3u)]du.I = \int_{0}^{1} \left[\frac{1}{6(1 - 3u)} - \frac{1}{6(1 + 3u)}\right] \, du.

  4. Integrate each term: Using the standard formula 1abudu=1blnabu+C\int \frac{1}{a - bu} \, du = -\frac{1}{b} \ln |a - bu| + C, we compute: 113udu=13ln13u,11+3udu=13ln1+3u.\int \frac{1}{1 - 3u} \, du = -\frac{1}{3} \ln |1 - 3u|, \quad \int \frac{1}{1 + 3u} \, du = \frac{1}{3} \ln |1 + 3u|.

    Combine these results: I=16[13ln13u+13ln1+3u]01.I = \frac{1}{6} \left[-\frac{1}{3} \ln |1 - 3u| + \frac{1}{3} \ln |1 + 3u|\right]_{0}^{1}.

  5. Simplify and apply limits: Factor out 118\frac{1}{18}: I=118[ln1+3uln13u]01.I = \frac{1}{18} \left[\ln |1 + 3u| - \ln |1 - 3u|\right]_{0}^{1}. Using the logarithm property lnalnb=lnab\ln a - \ln b = \ln \frac{a}{b}, this becomes: I=118ln[1+3u13u]01.I = \frac{1}{18} \ln \left[\frac{1 + 3u}{1 - 3u}\right]_{0}^{1}.

    Now substitute the limits:

    • At u=1u = 1: 1+3(1)13(1)=42=2\frac{1 + 3(1)}{1 - 3(1)} = \frac{4}{-2} = -2,
    • At u=0u = 0: 1+3(0)13(0)=11=1\frac{1 + 3(0)}{1 - 3(0)} = \frac{1}{1} = 1.

    Therefore: I=118[ln(2)ln(1)].I = \frac{1}{18} \left[\ln(-2) - \ln(1)\right].

    Since ln(2)\ln(-2) is not defined in the real domain, this integral diverges or is defined only in the complex domain.

Would you like to explore further about complex evaluations or have questions?


Related Questions:

  1. How does substitution simplify trigonometric integrals?
  2. What are partial fractions, and when are they useful in integration?
  3. Can the domain restrictions of ln(x)\ln(x) affect the integral’s result?
  4. What happens to this integral if 9tan2x-9\tan^2 x were replaced with +9tan2x+9\tan^2 x?
  5. How is this integral evaluated in the context of complex numbers?

Tip: Always check the domain of your integrand before starting computations to confirm the integral converges.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Integration
Substitution Method
Partial Fraction Decomposition
Logarithmic Integration
Complex Numbers in Integration

Formulas

u = tan(x), du = sec^2(x) dx
1 - 9u^2 = (1 - 3u)(1 + 3u)
∫ 1/(a - bu) du = -1/b ln|a - bu| + C
ln(a) - ln(b) = ln(a/b)

Theorems

Fundamental Theorem of Calculus
Properties of Logarithms
Partial Fraction Decomposition Theorem

Suitable Grade Level

Grades 11-12, College Level