Math Problem Statement
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Integral Calculus
Inverse Trigonometric Functions
Substitution in Integrals
Formulas
Integral of \( \int \frac{dx}{(1 - x^2)^{3/2}} = \frac{x}{\sqrt{1 - x^2}} + C \)
Derivative of \( \arcsin(x) = \frac{1}{\sqrt{1 - x^2}} \)
Theorems
Fundamental Theorem of Calculus
Suitable Grade Level
Undergraduate Calculus
Related Recommendation
Solve Integral Using Trigonometric Substitution: \(\int \frac{dx}{(1 - x^2)^{3/2}}\)
Integral of 14 / (x sqrt(1 + 2x)) Using Substitution Method
Evaluate the Integral of 1/(36 + x^2) Using Inverse Trigonometric Functions
Integral of 1 / ((x² + 4)√(x² + 9)) Using Trigonometric Substitution
Integral of x^3 cos(x/2) and sqrt(4 - x^2): Step-by-Step Solution