Math Problem Statement
Trig substitution
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Integral Calculus
Trigonometric Substitution
Completing the Square
Formulas
∫ 1 / √(9x^2 - 36x + 37) dx
Completing the square: x^2 - 4x = (x - 2)^2 - 4
Trigonometric Substitution: x - 2 = (1/3)tan(θ)
Integral of sec(θ): ∫ sec(θ) dθ = ln |sec(θ) + tan(θ)|
Theorems
Trigonometric Substitution Theorem
Pythagorean Identity
Completing the Square Method
Suitable Grade Level
Undergraduate Calculus
Related Recommendation
Integral of \( \frac{1}{\sqrt{9x^2 - 36x + 37}} dx \): Solving by Completing the Square
Integral of 1/(x²√(x²−9)) Using Trigonometric Substitution - Step-by-Step Solution
Solving the Integral of sqrt{x + sqrt{x^2 - 36}} dx using Trigonometric Substitution
Integral of 1 / √(4 - 9x²) Using Trigonometric Substitution
Integral of sqrt(x^2 - 9) / x^3 dx using Trigonometric Substitution