Math Problem Statement
Die Fibonacci Zahlen fn f¨ur n ∈ N sind rekursiv definiert als f1 := 1, f2 := 1, fn := fn−1 + fn−2 f¨ur n ≥ 3. Zeigen Sie per Induktion: (a) Es gilt fn+m = fn−1fm + fnfm+1 f¨ur alle m ∈ N und n ≥ 2. Insbesondere folgt f2n = fn(fn−1 + fn+1) = f 2 n+1 − f 2 n−1 f¨ur alle n ≥ 2
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Induction
Fibonacci Sequence
Recursive Sequences
Formulas
f_n = f_{n-1} + f_{n-2} for n ≥ 3
f_{n+m} = f_{n-1} f_m + f_n f_{m+1}
f_{2n} = f_n (f_{n-1} + f_{n+1}) = f_{n+1}^2 - f_{n-1}^2
Theorems
Mathematical Induction
Suitable Grade Level
Grades 11-12
Related Recommendation
Understanding Fibonacci Sequence Patterns: Fn−1Fn+1 − Fn^2
Verify Fibonacci Summation Identity for n=1,2,3,4
Understanding the Inductive Step in Fibonacci Sequence Proof
Understanding Fibonacci Sequence and Modular Arithmetic: Proof by Induction
Matrix Representation of Fibonacci Numbers and Induction Proof