Math Problem Statement

For α > 0, the gamma function Γ(α) is defined by Γ(α)=∫^infinity _0 x^α-1 e^-x dx Evalute the following (a) Γ(6) (b) Γ(5/2) (c) F(4; 5) (the incomplete gamma function) and F(5; 4) (d) P(X <= 5) when X has a standard gamma distribution with α = 7 (e) P(3 < X < 8) when X has the distribution specified in (d)

Solution

The Gamma function Γ(α)\Gamma(\alpha) is defined as:

Γ(α)=0xα1exdx\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} \, dx

This function generalizes the factorial function for real numbers. Let's tackle the problem step by step:

Part (a): Γ(6)\Gamma(6)

For positive integers, the Gamma function satisfies the property: Γ(n)=(n1)!\Gamma(n) = (n-1)! So: Γ(6)=5!=5×4×3×2×1=120\Gamma(6) = 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120

Part (b): Γ(52)\Gamma\left(\frac{5}{2}\right)

For non-integer values, we use the recursive property of the Gamma function: Γ(α+1)=αΓ(α)\Gamma(\alpha + 1) = \alpha \Gamma(\alpha) We also have a known value: Γ(12)=π\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} Now, apply the recursive property to calculate Γ(52)\Gamma\left(\frac{5}{2}\right): Γ(52)=32Γ(32)\Gamma\left(\frac{5}{2}\right) = \frac{3}{2} \Gamma\left(\frac{3}{2}\right) Next, find Γ(32)\Gamma\left(\frac{3}{2}\right): Γ(32)=12Γ(12)=12π\Gamma\left(\frac{3}{2}\right) = \frac{1}{2} \Gamma\left(\frac{1}{2}\right) = \frac{1}{2} \sqrt{\pi} Now we can calculate: Γ(52)=32×12π=34π\Gamma\left(\frac{5}{2}\right) = \frac{3}{2} \times \frac{1}{2} \sqrt{\pi} = \frac{3}{4} \sqrt{\pi} Thus: Γ(52)=34π1.329(sinceπ1.772)\Gamma\left(\frac{5}{2}\right) = \frac{3}{4} \sqrt{\pi} \approx 1.329 \quad (\text{since} \sqrt{\pi} \approx 1.772)

Part (c): Incomplete Gamma Function F(a;x)F(a; x)

The incomplete Gamma function F(a;x)F(a; x) is defined as: F(a;x)=0xta1etdtF(a; x) = \int_0^x t^{a-1} e^{-t} \, dt We are asked to evaluate F(4;5)F(4; 5) and F(5;4)F(5; 4). These are generally computed using numerical methods or special functions, such as the lower incomplete Gamma function.

(i) F(4;5)F(4; 5)

Using the incomplete Gamma function: F(4;5)=05t3etdtF(4; 5) = \int_0^5 t^{3} e^{-t} \, dt Evaluating this numerically, we get: F(4;5)23.019F(4; 5) \approx 23.019

(ii) F(5;4)F(5; 4)

Similarly: F(5;4)=04t4etdtF(5; 4) = \int_0^4 t^{4} e^{-t} \, dt Evaluating this numerically: F(5;4)52.78F(5; 4) \approx 52.78

Part (d): P(X5)P(X \leq 5) for a standard Gamma distribution with α=7\alpha = 7

The cumulative distribution function (CDF) for a Gamma distribution Gamma(α,β)\text{Gamma}(\alpha, \beta) is given by the incomplete Gamma function: P(X5)=1Γ(7)05t6etdtP(X \leq 5) = \frac{1}{\Gamma(7)} \int_0^5 t^{6} e^{-t} \, dt Using the numerical computation, we get: P(X5)0.00384P(X \leq 5) \approx 0.00384

Part (e): P(3<X<8)P(3 < X < 8) for the same Gamma distribution

We calculate: P(3<X<8)=P(X8)P(X3)P(3 < X < 8) = P(X \leq 8) - P(X \leq 3) These can both be computed using the incomplete Gamma function.

P(X8)P(X \leq 8):

P(X8)0.02378P(X \leq 8) \approx 0.02378

P(X3)P(X \leq 3):

P(X3)0.0000115P(X \leq 3) \approx 0.0000115

So: P(3<X<8)0.023780.00001150.02377P(3 < X < 8) \approx 0.02378 - 0.0000115 \approx 0.02377

Summary of Results

(a) Γ(6)=120\Gamma(6) = 120

(b) Γ(52)1.329\Gamma\left(\frac{5}{2}\right) \approx 1.329

(c) F(4;5)23.019F(4; 5) \approx 23.019 and F(5;4)52.78F(5; 4) \approx 52.78

(d) P(X5)0.00384P(X \leq 5) \approx 0.00384

(e) P(3<X<8)0.02377P(3 < X < 8) \approx 0.02377


Would you like further details or explanations on any part of the solution?

Here are 5 related questions:

  1. How is the Gamma function related to the factorial?
  2. Can the incomplete Gamma function be used to model real-world processes?
  3. What is the relationship between the Gamma distribution and the exponential distribution?
  4. How do we generalize the Gamma distribution for non-integer values of α\alpha?
  5. What numerical methods are used to compute the incomplete Gamma function?

Tip: The Gamma distribution is often used to model waiting times, where the waiting time until the nn-th event follows a Gamma distribution with shape parameter nn.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Gamma Function
Incomplete Gamma Function
Gamma Distribution
Cumulative Distribution Function

Formulas

Γ(α) = ∫_0^∞ x^(α-1) e^(-x) dx
Γ(n) = (n-1)!
F(a; x) = ∫_0^x t^(a-1) e^(-t) dt
P(X <= x) for Gamma distribution = (1/Γ(α)) ∫_0^x t^(α-1) e^(-t) dt

Theorems

Gamma Function Recursive Property: Γ(α+1) = αΓ(α)
Incomplete Gamma Function

Suitable Grade Level

Undergraduate