The image contains the following mathematical problems that need solutions:
g(x)=5x−7;g(x+1)
h(x)=x2+2x+4;h(2)
k(x)=2x+43x−2;k(−3)
f(x)=2x2+5x−9;f(5x−2)
g(p)=4p;p(23)
Solutions:
1. g(x)=5x−7, find g(x+1).
To solve g(x+1), substitute x+1 into the function g(x):
g(x+1)=5(x+1)−7=5x+5−7=5x−2
So, g(x+1)=5x−2.
2. h(x)=x2+2x+4, find h(2).
To solve h(2), substitute x=2 into the function h(x):
h(2)=22+2(2)+4=4+4+4=12=23
So, h(2)=23.
3. k(x)=2x+43x−2, find k(−3).
To solve k(−3), substitute x=−3 into the function k(x):
k(−3)=2(−3)+43(−3)−2=−6+4−9−2=−2−11=211
So, k(−3)=211.
4. f(x)=2x2+5x−9, find f(5x−2).
We need to substitute 5x−2 for x in the function f(x):
f(5x−2)=2(5x−2)2+5(5x−2)−9
First, expand (5x−2)2:
(5x−2)2=25x2−20x+4
Now substitute:
f(5x−2)=2(25x2−20x+4)+5(5x−2)−9=50x2−40x+8+25x−10−9
Simplify:
f(5x−2)=50x2−15x−11
5. g(p)=4p, find p(23).
Since g(p)=4p, we can evaluate g(23):
g(23)=4×23=6
So, g(23)=6.
Summary of Results:
g(x+1)=5x−2
h(2)=23
k(−3)=211
f(5x−2)=50x2−15x−11
g(23)=6
Would you like further details on any step? Here are five related questions for practice:
How would you solve g(x+2) if g(x)=5x−7?
What is the domain of h(x)=x2+2x+4?
Can you simplify the expression for k(x)=2x+43x−2 in general?
How would f(x)=2x2+5x−9 change if f(3x−4) was required?
What are the intercepts of g(p)=4p?
Tip: Always start by simplifying your algebraic expressions before substituting the values.