Math Problem Statement

give solution

Evaluate the following functions: 1. g(x) = 5x - 7; g(x + 1) 2. h(x) = √(x² + 2x + 4); h(2) 3. k(x) = (3x - 2)/(2x + 4); k(-3) 4. f(x) = 2x² + 5x - 9; f(5x - 2) 5. g(p) = 4p; p(3/2)

Solution

The image contains the following mathematical problems that need solutions:

  1. g(x)=5x7;g(x+1)g(x) = 5x - 7; g(x + 1)
  2. h(x)=x2+2x+4;h(2)h(x) = \sqrt{x^2 + 2x + 4}; h(2)
  3. k(x)=3x22x+4;k(3)k(x) = \frac{3x - 2}{2x + 4}; k(-3)
  4. f(x)=2x2+5x9;f(5x2)f(x) = 2x^2 + 5x - 9; f(5x - 2)
  5. g(p)=4p;p(32)g(p) = 4p; p\left(\frac{3}{2}\right)

Solutions:


1. g(x)=5x7g(x) = 5x - 7, find g(x+1)g(x + 1).

To solve g(x+1)g(x + 1), substitute x+1x + 1 into the function g(x)g(x): g(x+1)=5(x+1)7=5x+57=5x2g(x + 1) = 5(x + 1) - 7 = 5x + 5 - 7 = 5x - 2 So, g(x+1)=5x2g(x + 1) = 5x - 2.


2. h(x)=x2+2x+4h(x) = \sqrt{x^2 + 2x + 4}, find h(2)h(2).

To solve h(2)h(2), substitute x=2x = 2 into the function h(x)h(x): h(2)=22+2(2)+4=4+4+4=12=23h(2) = \sqrt{2^2 + 2(2) + 4} = \sqrt{4 + 4 + 4} = \sqrt{12} = 2\sqrt{3} So, h(2)=23h(2) = 2\sqrt{3}.


3. k(x)=3x22x+4k(x) = \frac{3x - 2}{2x + 4}, find k(3)k(-3).

To solve k(3)k(-3), substitute x=3x = -3 into the function k(x)k(x): k(3)=3(3)22(3)+4=926+4=112=112k(-3) = \frac{3(-3) - 2}{2(-3) + 4} = \frac{-9 - 2}{-6 + 4} = \frac{-11}{-2} = \frac{11}{2} So, k(3)=112k(-3) = \frac{11}{2}.


4. f(x)=2x2+5x9f(x) = 2x^2 + 5x - 9, find f(5x2)f(5x - 2).

We need to substitute 5x25x - 2 for xx in the function f(x)f(x): f(5x2)=2(5x2)2+5(5x2)9f(5x - 2) = 2(5x - 2)^2 + 5(5x - 2) - 9 First, expand (5x2)2(5x - 2)^2: (5x2)2=25x220x+4(5x - 2)^2 = 25x^2 - 20x + 4 Now substitute: f(5x2)=2(25x220x+4)+5(5x2)9=50x240x+8+25x109f(5x - 2) = 2(25x^2 - 20x + 4) + 5(5x - 2) - 9 = 50x^2 - 40x + 8 + 25x - 10 - 9 Simplify: f(5x2)=50x215x11f(5x - 2) = 50x^2 - 15x - 11


5. g(p)=4pg(p) = 4p, find p(32)p\left(\frac{3}{2}\right).

Since g(p)=4pg(p) = 4p, we can evaluate g(32)g\left(\frac{3}{2}\right): g(32)=4×32=6g\left(\frac{3}{2}\right) = 4 \times \frac{3}{2} = 6 So, g(32)=6g\left(\frac{3}{2}\right) = 6.


Summary of Results:

  1. g(x+1)=5x2g(x + 1) = 5x - 2
  2. h(2)=23h(2) = 2\sqrt{3}
  3. k(3)=112k(-3) = \frac{11}{2}
  4. f(5x2)=50x215x11f(5x - 2) = 50x^2 - 15x - 11
  5. g(32)=6g\left(\frac{3}{2}\right) = 6

Would you like further details on any step? Here are five related questions for practice:

  1. How would you solve g(x+2)g(x + 2) if g(x)=5x7g(x) = 5x - 7?
  2. What is the domain of h(x)=x2+2x+4h(x) = \sqrt{x^2 + 2x + 4}?
  3. Can you simplify the expression for k(x)=3x22x+4k(x) = \frac{3x - 2}{2x + 4} in general?
  4. How would f(x)=2x2+5x9f(x) = 2x^2 + 5x - 9 change if f(3x4)f(3x - 4) was required?
  5. What are the intercepts of g(p)=4pg(p) = 4p?

Tip: Always start by simplifying your algebraic expressions before substituting the values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Functions
Substitution
Algebra
Square Roots
Rational Expressions

Formulas

g(x + 1) = 5(x + 1) - 7
h(x) = √(x² + 2x + 4)
k(x) = (3x - 2)/(2x + 4)
f(x) = 2x² + 5x - 9
g(p) = 4p

Theorems

-

Suitable Grade Level

Grades 9-11