Math Problem Statement

Hitunglah dg baik dan benar

Hitunglah dengan baik dan benar

Solution

The image you've provided contains a series of mathematical functions and operations that need to be calculated. I'll go through the problems step by step.

Provided Functions:

  1. f(x)=x2+1f(x) = x^2 + 1
  2. g(x)=2x1g(x) = 2x - 1
  3. h(x)=x+1h(x) = x + 1

Problems:

The problems listed involve various operations and compositions of the given functions. Let's solve them one by one.

a. (fg)(x)=f(g(x))(f \circ g)(x) = f(g(x))

  • Substitute g(x)g(x) into f(x)f(x): g(x)=2x1g(x) = 2x - 1 f(g(x))=f(2x1)=(2x1)2+1f(g(x)) = f(2x - 1) = (2x - 1)^2 + 1
  • Expand the square: (2x1)2=4x24x+1(2x - 1)^2 = 4x^2 - 4x + 1
  • Add 1 to the result: f(g(x))=4x24x+2f(g(x)) = 4x^2 - 4x + 2

b. (gf)(x)=g(f(x))(g \circ f)(x) = g(f(x))

  • Substitute f(x)f(x) into g(x)g(x): f(x)=x2+1f(x) = x^2 + 1 g(f(x))=g(x2+1)=2(x2+1)1g(f(x)) = g(x^2 + 1) = 2(x^2 + 1) - 1
  • Simplify: g(f(x))=2x2+21=2x2+1g(f(x)) = 2x^2 + 2 - 1 = 2x^2 + 1

c. f(g(1))f(g(1))

  • Find g(1)g(1) first: g(1)=2(1)1=1g(1) = 2(1) - 1 = 1
  • Now, find f(1)f(1): f(1)=12+1=2f(1) = 1^2 + 1 = 2 So, f(g(1))=2f(g(1)) = 2.

d. g(f(1))g(f(1))

  • Find f(1)f(1) first: f(1)=12+1=2f(1) = 1^2 + 1 = 2
  • Now, find g(2)g(2): g(2)=2(2)1=3g(2) = 2(2) - 1 = 3 So, g(f(1))=3g(f(1)) = 3.

e. f(f(x))f(f(x))

  • Substitute f(x)f(x) into itself: f(f(x))=f(x2+1)=(x2+1)2+1f(f(x)) = f(x^2 + 1) = (x^2 + 1)^2 + 1
  • Expand: (x2+1)2=x4+2x2+1(x^2 + 1)^2 = x^4 + 2x^2 + 1
  • Add 1 to the result: f(f(x))=x4+2x2+2f(f(x)) = x^4 + 2x^2 + 2

f. g(g(x))g(g(x))

  • Substitute g(x)g(x) into itself: g(g(x))=g(2x1)=2(2x1)1=4x21g(g(x)) = g(2x - 1) = 2(2x - 1) - 1 = 4x - 2 - 1
  • Simplify: g(g(x))=4x3g(g(x)) = 4x - 3

g. (fh)(x)=f(h(x))(f \circ h)(x) = f(h(x))

  • Substitute h(x)h(x) into f(x)f(x): h(x)=x+1h(x) = x + 1 f(h(x))=f(x+1)=(x+1)2+1f(h(x)) = f(x + 1) = (x + 1)^2 + 1
  • Expand: (x+1)2=x2+2x+1(x + 1)^2 = x^2 + 2x + 1
  • Add 1 to the result: f(h(x))=x2+2x+2f(h(x)) = x^2 + 2x + 2

h. (gfh)(x)=g(f(h(x)))(g \circ f \circ h)(x) = g(f(h(x)))

  • Substitute h(x)=x+1h(x) = x + 1 into f(x)f(x) first: f(h(x))=(x+1)2+1=x2+2x+2f(h(x)) = (x + 1)^2 + 1 = x^2 + 2x + 2
  • Now, substitute into g(x)g(x): g(f(h(x)))=g(x2+2x+2)=2(x2+2x+2)1g(f(h(x))) = g(x^2 + 2x + 2) = 2(x^2 + 2x + 2) - 1
  • Simplify: g(f(h(x)))=2x2+4x+41=2x2+4x+3g(f(h(x))) = 2x^2 + 4x + 4 - 1 = 2x^2 + 4x + 3

These are the solutions to the given problems. Would you like further details on any of these steps or have any additional questions?

Related Questions:

  1. What is the difference between a composition of functions and a regular function operation?
  2. How would the results change if f(x)=x2f(x) = x^2 instead of x2+1x^2 + 1?
  3. How can you verify the results of a composition of functions using specific values of xx?
  4. What are the properties of function compositions?
  5. How can compositions of functions be used in real-life applications?

Tip:

When dealing with compositions of functions, always substitute the inner function into the outer one carefully, and simplify the expressions step by step to avoid errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Algebra
Quadratic Functions

Formulas

f(x) = x^2 + 1
g(x) = 2x - 1
h(x) = x + 1
(f ∘ g)(x) = f(g(x))
(g ∘ f)(x) = g(f(x))

Theorems

Function Composition
Substitution in Functions

Suitable Grade Level

Grades 10-12