Math Problem Statement

Find (f∘g)(x), (g∘f)(x), and (f∘g)(2) for the given pairs of functions.

Solution

Let's solve each part of the problem by finding (fg)(x)(f \circ g)(x), (gf)(x)(g \circ f)(x), and (fg)(2)(f \circ g)(2) for all the given functions.

1. f(x)=2xf(x) = 2x and g(x)=x+5g(x) = x + 5

  • (fg)(x)(f \circ g)(x): f(g(x))=f(x+5)=2(x+5)=2x+10f(g(x)) = f(x + 5) = 2(x + 5) = 2x + 10
  • (gf)(x)(g \circ f)(x): g(f(x))=g(2x)=2x+5g(f(x)) = g(2x) = 2x + 5
  • (fg)(2)(f \circ g)(2): f(g(2))=f(2+5)=f(7)=2(7)=14f(g(2)) = f(2 + 5) = f(7) = 2(7) = 14

2. f(x)=4xf(x) = 4x and g(x)=x3g(x) = x - 3

  • (fg)(x)(f \circ g)(x): f(g(x))=f(x3)=4(x3)=4x12f(g(x)) = f(x - 3) = 4(x - 3) = 4x - 12
  • (gf)(x)(g \circ f)(x): g(f(x))=g(4x)=4x3g(f(x)) = g(4x) = 4x - 3
  • (fg)(2)(f \circ g)(2): f(g(2))=f(23)=f(1)=4(1)=4f(g(2)) = f(2 - 3) = f(-1) = 4(-1) = -4

3. f(x)=2x+1f(x) = 2x + 1 and g(x)=3x2g(x) = 3x - 2

  • (fg)(x)(f \circ g)(x): f(g(x))=f(3x2)=2(3x2)+1=6x4+1=6x3f(g(x)) = f(3x - 2) = 2(3x - 2) + 1 = 6x - 4 + 1 = 6x - 3
  • (gf)(x)(g \circ f)(x): g(f(x))=g(2x+1)=3(2x+1)2=6x+32=6x+1g(f(x)) = g(2x + 1) = 3(2x + 1) - 2 = 6x + 3 - 2 = 6x + 1
  • (fg)(2)(f \circ g)(2): f(g(2))=f(3(2)2)=f(62)=f(4)=2(4)+1=9f(g(2)) = f(3(2) - 2) = f(6 - 2) = f(4) = 2(4) + 1 = 9

4. f(x)=5x3f(x) = 5x - 3 and g(x)=x23g(x) = x^2 - 3

  • (fg)(x)(f \circ g)(x): f(g(x))=f(x23)=5(x23)3=5x2153=5x218f(g(x)) = f(x^2 - 3) = 5(x^2 - 3) - 3 = 5x^2 - 15 - 3 = 5x^2 - 18
  • (gf)(x)(g \circ f)(x): g(f(x))=g(5x3)=(5x3)23=25x230x+93=25x230x+6g(f(x)) = g(5x - 3) = (5x - 3)^2 - 3 = 25x^2 - 30x + 9 - 3 = 25x^2 - 30x + 6
  • (fg)(2)(f \circ g)(2): f(g(2))=f(223)=f(43)=f(1)=5(1)3=2f(g(2)) = f(2^2 - 3) = f(4 - 3) = f(1) = 5(1) - 3 = 2

5. f(x)=x2+3f(x) = x^2 + 3 and g(x)=x21g(x) = x^2 - 1

  • (fg)(x)(f \circ g)(x): f(g(x))=f(x21)=(x21)2+3=x42x2+1+3=x42x2+4f(g(x)) = f(x^2 - 1) = (x^2 - 1)^2 + 3 = x^4 - 2x^2 + 1 + 3 = x^4 - 2x^2 + 4
  • (gf)(x)(g \circ f)(x): g(f(x))=g(x2+3)=(x2+3)21=x4+6x2+91=x4+6x2+8g(f(x)) = g(x^2 + 3) = (x^2 + 3)^2 - 1 = x^4 + 6x^2 + 9 - 1 = x^4 + 6x^2 + 8
  • (fg)(2)(f \circ g)(2): f(g(2))=f(221)=f(41)=f(3)=32+3=9+3=12f(g(2)) = f(2^2 - 1) = f(4 - 1) = f(3) = 3^2 + 3 = 9 + 3 = 12

Would you like further clarification on any of these calculations?

Here are five related questions you might find helpful:

  1. How do you calculate compositions of functions in general?
  2. What are the common mistakes to avoid when composing functions?
  3. Can we derive the domain and range for fgf \circ g in these cases?
  4. How would the results change if f(x)f(x) and g(x)g(x) were swapped?
  5. What are some real-life applications of function compositions?

Tip: Always carefully substitute the functions when composing them to avoid errors in algebraic manipulation!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Algebra

Formulas

(f∘g)(x) = f(g(x))
(g∘f)(x) = g(f(x))

Theorems

-

Suitable Grade Level

Grades 10-12