Math Problem Statement

Let f(x) = 3x + 5 and g(x) = 2x^2 + 3x. Match the compositions g(f(x)), f(f(x)), g(g(x)), and f(g(x)) with the given options.

Solution

The problem asks to match the compositions of two functions f(x)=3x+5f(x) = 3x + 5 and g(x)=2x2+3xg(x) = 2x^2 + 3x with their equivalent expressions.

We are given four options for compositions of functions:

  1. gfg \circ f
  2. fff \circ f
  3. ggg \circ g
  4. fgf \circ g

Let's calculate each composition:

  1. gf(x)=g(f(x))g \circ f(x) = g(f(x))
    We first substitute f(x)=3x+5f(x) = 3x + 5 into g(x)=2x2+3xg(x) = 2x^2 + 3x.
    g(f(x))=2(3x+5)2+3(3x+5)g(f(x)) = 2(3x + 5)^2 + 3(3x + 5) First expand (3x+5)2=9x2+30x+25(3x + 5)^2 = 9x^2 + 30x + 25:
    g(f(x))=2(9x2+30x+25)+3(3x+5)g(f(x)) = 2(9x^2 + 30x + 25) + 3(3x + 5) Expand both terms: =18x2+60x+50+9x+15= 18x^2 + 60x + 50 + 9x + 15 Simplifying: g(f(x))=18x2+69x+65g(f(x)) = 18x^2 + 69x + 65 This corresponds to option D.

  2. ff(x)=f(f(x))f \circ f(x) = f(f(x))
    Substitute f(x)=3x+5f(x) = 3x + 5 into itself: f(f(x))=3(3x+5)+5f(f(x)) = 3(3x + 5) + 5 Expand: =9x+15+5=9x+20= 9x + 15 + 5 = 9x + 20 This corresponds to option B.

  3. gg(x)=g(g(x))g \circ g(x) = g(g(x))
    Substitute g(x)=2x2+3xg(x) = 2x^2 + 3x into itself: g(g(x))=2(2x2+3x)2+3(2x2+3x)g(g(x)) = 2(2x^2 + 3x)^2 + 3(2x^2 + 3x) First, expand (2x2+3x)2=4x4+12x3+9x2(2x^2 + 3x)^2 = 4x^4 + 12x^3 + 9x^2:
    g(g(x))=2(4x4+12x3+9x2)+3(2x2+3x)g(g(x)) = 2(4x^4 + 12x^3 + 9x^2) + 3(2x^2 + 3x) Expand both terms: =8x4+24x3+18x2+6x2+9x= 8x^4 + 24x^3 + 18x^2 + 6x^2 + 9x Simplifying: g(g(x))=8x4+24x3+24x2+9xg(g(x)) = 8x^4 + 24x^3 + 24x^2 + 9x This corresponds to option A.

  4. fg(x)=f(g(x))f \circ g(x) = f(g(x))
    Substitute g(x)=2x2+3xg(x) = 2x^2 + 3x into f(x)=3x+5f(x) = 3x + 5: f(g(x))=3(2x2+3x)+5f(g(x)) = 3(2x^2 + 3x) + 5 Expand: =6x2+9x+5= 6x^2 + 9x + 5 This corresponds to option C.

Final Answers:

  1. gfg \circ fD
  2. fff \circ fB
  3. ggg \circ gA
  4. fgf \circ gC

Let me know if you need further explanation or have any questions!


Here are 5 related questions for practice:

  1. What is the inverse of f(x)=3x+5f(x) = 3x + 5?
  2. Can you find the inverse of g(x)=2x2+3xg(x) = 2x^2 + 3x?
  3. What happens if you compose two inverse functions?
  4. How do you verify if two functions are inverses?
  5. What is the domain and range of the function g(x)=2x2+3xg(x) = 2x^2 + 3x?

Tip: When composing functions, always remember to substitute one function into the other and carefully simplify the expression step by step!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Algebra
Quadratic Equations

Formulas

g(f(x)) = g(f(x))
f(f(x)) = f(f(x))
g(g(x)) = g(g(x))
f(g(x)) = f(g(x))

Theorems

Function Composition
Quadratic Expansion

Suitable Grade Level

Grades 10-12