Math Problem Statement

Jelaskan dan selesaikan !

Jika f(x) = (5x - 1) / (3x + 4) dan g(x) = 5 / (2x), maka (f o g)(x) adalah ...

Solution

We are given two functions:

  1. f(x)=5x13x+4f(x) = \frac{5x - 1}{3x + 4}
  2. g(x)=52xg(x) = \frac{5}{2x}

The problem asks us to find (fg)(x)(f \circ g)(x), which is the composition of the functions ff and gg. This means we need to substitute g(x)g(x) into f(x)f(x).

Step-by-step solution:

To find (fg)(x)(f \circ g)(x), we substitute g(x)=52xg(x) = \frac{5}{2x} into f(x)f(x):

(fg)(x)=f(g(x))=f(52x)(f \circ g)(x) = f(g(x)) = f\left( \frac{5}{2x} \right)

Now, substitute 52x\frac{5}{2x} for xx in the expression for f(x)f(x):

f(52x)=5(52x)13(52x)+4f\left( \frac{5}{2x} \right) = \frac{5\left(\frac{5}{2x}\right) - 1}{3\left(\frac{5}{2x}\right) + 4}

Simplify both the numerator and denominator:

Numerator:

5(52x)=252x5\left( \frac{5}{2x} \right) = \frac{25}{2x} 252x1=252x2x2x=252x2x\frac{25}{2x} - 1 = \frac{25}{2x} - \frac{2x}{2x} = \frac{25 - 2x}{2x}

Denominator:

3(52x)=152x3\left( \frac{5}{2x} \right) = \frac{15}{2x} 152x+4=152x+8x2x=15+8x2x\frac{15}{2x} + 4 = \frac{15}{2x} + \frac{8x}{2x} = \frac{15 + 8x}{2x}

Thus, the composition (fg)(x)(f \circ g)(x) becomes:

(fg)(x)=252x2x15+8x2x(f \circ g)(x) = \frac{\frac{25 - 2x}{2x}}{\frac{15 + 8x}{2x}}

Since both the numerator and denominator are divided by 2x2x, these terms cancel out:

(fg)(x)=252x15+8x(f \circ g)(x) = \frac{25 - 2x}{15 + 8x}

Final Answer:

(fg)(x)=252x15+8x(f \circ g)(x) = \frac{25 - 2x}{15 + 8x}

Would you like further explanation, or have any questions?

Here are 5 related questions to consider:

  1. What is the domain of the function (fg)(x)(f \circ g)(x)?
  2. How would you compute (gf)(x)(g \circ f)(x) in this case?
  3. How can you verify the result of (fg)(x)(f \circ g)(x) by plugging in specific values of xx?
  4. What happens to (fg)(x)(f \circ g)(x) as xx approaches 0?
  5. How would you graph the composition (fg)(x)(f \circ g)(x)?

Tip: When simplifying complex fractions, always look for common factors or terms that can cancel out to simplify the expression!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Algebraic Manipulation
Rational Functions

Formulas

Function composition formula: (f o g)(x) = f(g(x))

Theorems

Substitution of functions

Suitable Grade Level

Grades 10-12