Math Problem Statement

fourier transform of cos(nwt)

Solution

The Fourier Transform of the function cos(nωt)\cos(n \omega t) can be derived by expressing the cosine function in terms of complex exponentials.

1. Expression in Complex Exponentials

We start with: cos(nωt)=einωt+einωt2\cos(n \omega t) = \frac{e^{i n \omega t} + e^{-i n \omega t}}{2}

2. Fourier Transform of cos(nωt)\cos(n \omega t)

The Fourier Transform of a function f(t)f(t) is defined as: F(ω)=f(t)eiωtdtF(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i \omega t} \, dt

Substitute f(t)=cos(nωt)=einωt+einωt2f(t) = \cos(n \omega t) = \frac{e^{i n \omega t} + e^{-i n \omega t}}{2}: F(ω)=einωt+einωt2eiωtdtF(\omega) = \int_{-\infty}^{\infty} \frac{e^{i n \omega t} + e^{-i n \omega t}}{2} e^{-i \omega t} \, dt

This expands as: F(ω)=12ei(nωω)tdt+12ei(nω+ω)tdtF(\omega) = \frac{1}{2} \int_{-\infty}^{\infty} e^{i (n \omega - \omega) t} \, dt + \frac{1}{2} \int_{-\infty}^{\infty} e^{-i (n \omega + \omega) t} \, dt

3. Solving the Integrals

These integrals are known as Dirac delta functions in the frequency domain, resulting in: F(ω)=π[δ(ωnω)+δ(ω+nω)]F(\omega) = \pi \left[ \delta(\omega - n \omega) + \delta(\omega + n \omega) \right]

Final Result

Thus, the Fourier Transform of cos(nωt)\cos(n \omega t) is: F(ω)=π[δ(ωnω)+δ(ω+nω)]F(\omega) = \pi \left[ \delta(\omega - n \omega) + \delta(\omega + n \omega) \right]

This result shows that the Fourier Transform of cos(nωt)\cos(n \omega t) has two spikes at frequencies ω=±nω\omega = \pm n \omega.

Would you like further details on this derivation or applications of this result?


Here are five related questions:

  1. How would the Fourier Transform change if we used sin(nωt)\sin(n \omega t) instead of cos(nωt)\cos(n \omega t)?
  2. What is the Fourier Transform of cos(ωt)\cos(\omega t) without the factor nn?
  3. How can this result be used in analyzing periodic signals in signal processing?
  4. What are Dirac delta functions, and how are they used in Fourier analysis?
  5. How does the Fourier Transform of a cosine compare to that of an exponential function?

Tip: The Fourier Transform of cosines and sines gives a good understanding of frequency components, crucial in analyzing real-world signals like sound waves and electrical currents.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fourier Transform
Complex Exponentials
Dirac Delta Function
Frequency Analysis

Formulas

cos(nωt) = (e^(i nωt) + e^(-i nωt)) / 2
Fourier Transform: F(ω) = ∫[f(t) e^(-iωt) dt]
Fourier Transform of cos(nωt): F(ω) = π[δ(ω - nω) + δ(ω + nω)]

Theorems

Dirac Delta Function in Frequency Analysis
Fourier Transform of Cosine Function

Suitable Grade Level

Undergraduate