Math Problem Statement

Find the Fourier series to represent f(x) = x for 0 < x < 2π.

Solution

To solve this, we are asked to find the Fourier series for the function f(x)=xf(x) = x on the interval 0<x<2π0 < x < 2\pi.

General Formula for Fourier Series:

The Fourier series of a function f(x)f(x) defined on the interval [0,2π][0, 2\pi] is given by:

f(x)=a02+n=1(ancos(nx)+bnsin(nx))f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos(nx) + b_n \sin(nx) \right)

Where the coefficients a0a_0, ana_n, and bnb_n are defined as:

  • a0=1π02πf(x)dxa_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \, dx
  • an=1π02πf(x)cos(nx)dxa_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) \, dx
  • bn=1π02πf(x)sin(nx)dxb_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) \, dx

Step 1: Compute a0a_0

a0=1π02πxdxa_0 = \frac{1}{\pi} \int_0^{2\pi} x \, dx a0=1π[x22]02π=1π×(2π)22=2πa_0 = \frac{1}{\pi} \left[ \frac{x^2}{2} \right]_0^{2\pi} = \frac{1}{\pi} \times \frac{(2\pi)^2}{2} = 2\pi Thus, a0=2πa_0 = 2\pi.

Step 2: Compute ana_n

an=1π02πxcos(nx)dxa_n = \frac{1}{\pi} \int_0^{2\pi} x \cos(nx) \, dx This requires integration by parts. Let u=xu = x and dv=cos(nx)dxdv = \cos(nx) \, dx.

  • du=dxdu = dx
  • v=sin(nx)nv = \frac{\sin(nx)}{n}

Thus, applying integration by parts: an=1π[xsin(nx)n]02π1π02πsin(nx)ndxa_n = \frac{1}{\pi} \left[ \frac{x \sin(nx)}{n} \right]_0^{2\pi} - \frac{1}{\pi} \int_0^{2\pi} \frac{\sin(nx)}{n} \, dx Evaluating the boundary terms at 0 and 2π2\pi, they vanish because sin(n0)=sin(n2π)=0\sin(n \cdot 0) = \sin(n \cdot 2\pi) = 0. The remaining integral is: an=1πn02πsin(nx)dx=0a_n = -\frac{1}{\pi n} \int_0^{2\pi} \sin(nx) \, dx = 0 Thus, an=0a_n = 0.

Step 3: Compute bnb_n

bn=1π02πxsin(nx)dxb_n = \frac{1}{\pi} \int_0^{2\pi} x \sin(nx) \, dx Again, use integration by parts with u=xu = x and dv=sin(nx)dxdv = \sin(nx) \, dx.

  • du=dxdu = dx
  • v=cos(nx)nv = -\frac{\cos(nx)}{n}

Applying integration by parts: bn=1π[xcos(nx)n]02π+1π02πcos(nx)ndxb_n = \frac{1}{\pi} \left[ -\frac{x \cos(nx)}{n} \right]_0^{2\pi} + \frac{1}{\pi} \int_0^{2\pi} \frac{\cos(nx)}{n} \, dx Evaluating the boundary terms at 0 and 2π2\pi again gives 0 because cos(n0)=cos(n2π)=1\cos(n \cdot 0) = \cos(n \cdot 2\pi) = 1. The remaining integral is: b_n = \frac{1}{n} \cdot 2 \quad \text{(since the integral evaluates to 2foroddfor oddn)}.

Final Fourier Series:

The Fourier series for f(x)=xf(x) = x over 0<x<2π0 < x < 2\pi is: f(x)=π2n=1(1)nnsin(nx)f(x) = \pi - 2\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin(nx)

Would you like further clarification on any step or additional details? Here are five related questions to deepen your understanding:

  1. How does the Fourier series differ when the function is defined on a symmetric interval, such as [π,π][-\pi, \pi]?
  2. What happens to the Fourier series if we extend f(x)=xf(x) = x periodically beyond [0,2π][0, 2\pi]?
  3. Could we represent non-periodic functions using Fourier series over a finite interval?
  4. Why do the cosine terms vanish for this function in the Fourier series?
  5. What are the practical applications of Fourier series in engineering and physics?

Tip: For odd functions, the Fourier series will only contain sine terms, while for even functions, it will only contain cosine terms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fourier Series
Trigonometric Functions
Integration by Parts

Formulas

f(x) = (a_0/2) + Σ(a_n cos(nx) + b_n sin(nx))
a_0 = (1/π) ∫_0^2π f(x) dx
a_n = (1/π) ∫_0^2π f(x) cos(nx) dx
b_n = (1/π) ∫_0^2π f(x) sin(nx) dx

Theorems

Fourier's Theorem

Suitable Grade Level

College-Level (Advanced Calculus or Mathematical Analysis)