Math Problem Statement

Obtain Fourier series for ƒ(x) = x in (-π, π).

Solution

To find the Fourier series for f(x)=xf(x) = x in the interval (π,π)(-\pi, \pi), follow these steps:

General Fourier Series Formula:

f(x)=a0+n=1(ancos(nx)+bnsin(nx))f(x) = a_0 + \sum_{n=1}^\infty \left( a_n \cos(nx) + b_n \sin(nx) \right) where:

  • a0=12πππf(x)dxa_0 = \frac{1}{2\pi} \int_{-\pi}^\pi f(x) \, dx
  • an=1πππf(x)cos(nx)dxa_n = \frac{1}{\pi} \int_{-\pi}^\pi f(x) \cos(nx) \, dx
  • bn=1πππf(x)sin(nx)dxb_n = \frac{1}{\pi} \int_{-\pi}^\pi f(x) \sin(nx) \, dx

Step 1: Compute a0a_0

a0=12πππxdxa_0 = \frac{1}{2\pi} \int_{-\pi}^\pi x \, dx Since xx is an odd function and the limits are symmetric about zero: a0=0a_0 = 0


Step 2: Compute ana_n

an=1πππxcos(nx)dxa_n = \frac{1}{\pi} \int_{-\pi}^\pi x \cos(nx) \, dx Because xcos(nx)x \cos(nx) is an odd function (product of odd xx and even cos(nx)\cos(nx)), the integral over symmetric limits becomes: an=0a_n = 0


Step 3: Compute bnb_n

bn=1πππxsin(nx)dxb_n = \frac{1}{\pi} \int_{-\pi}^\pi x \sin(nx) \, dx Since xsin(nx)x \sin(nx) is an even function (product of odd xx and odd sin(nx)\sin(nx)), evaluate the integral: bn=1πππxsin(nx)dx=2π0πxsin(nx)dxb_n = \frac{1}{\pi} \int_{-\pi}^\pi x \sin(nx) \, dx = \frac{2}{\pi} \int_{0}^\pi x \sin(nx) \, dx Use integration by parts:

  • Let u=xu = x, dv=sin(nx)dxdv = \sin(nx) \, dx
  • Then du=dxdu = dx, v=1ncos(nx)v = -\frac{1}{n} \cos(nx)

xsin(nx)dx=xncos(nx)+1ncos(nx)dx\int x \sin(nx) \, dx = -\frac{x}{n} \cos(nx) + \frac{1}{n} \int \cos(nx) \, dx =xncos(nx)+1n2sin(nx)= -\frac{x}{n} \cos(nx) + \frac{1}{n^2} \sin(nx) Evaluate from 00 to π\pi: 0πxsin(nx)dx=[xncos(nx)+1n2sin(nx)]0π\int_0^\pi x \sin(nx) \, dx = \left[ -\frac{x}{n} \cos(nx) + \frac{1}{n^2} \sin(nx) \right]_0^\pi At x=πx = \pi: πncos(nπ)+1n2sin(nπ)-\frac{\pi}{n} \cos(n\pi) + \frac{1}{n^2} \sin(n\pi) At x=0x = 0: 00 Since sin(nπ)=0\sin(n\pi) = 0 and cos(nπ)=(1)n\cos(n\pi) = (-1)^n: 0πxsin(nx)dx=πn(1)n=πn(1)n+1\int_0^\pi x \sin(nx) \, dx = -\frac{\pi}{n} (-1)^n = \frac{\pi}{n} (-1)^{n+1} Thus: bn=2ππn(1)n+1=2n(1)n+1b_n = \frac{2}{\pi} \cdot \frac{\pi}{n} (-1)^{n+1} = \frac{2}{n} (-1)^{n+1}


Fourier Series:

Substituting into the Fourier series formula: f(x)=n=12n(1)n+1sin(nx)f(x) = \sum_{n=1}^\infty \frac{2}{n} (-1)^{n+1} \sin(nx) Thus, the Fourier series for f(x)=xf(x) = x in (π,π)(-\pi, \pi) is: f(x)=2n=1(1)n+1nsin(nx)f(x) = 2 \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} \sin(nx)


Would you like a detailed explanation of the derivation steps or any clarifications? 😊

5 Related Questions:

  1. How do even and odd functions simplify Fourier series computations?
  2. Why does ana_n vanish for odd functions?
  3. What are practical applications of Fourier series in signal processing?
  4. How does symmetry in f(x)f(x) influence the Fourier coefficients?
  5. Can this Fourier series be used to approximate f(x)=xf(x) = x for all xx?

Tip:

Remember that Fourier series coefficients reveal much about the function's symmetry properties—odd functions only have sine terms, and even functions only have cosine terms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fourier Series
Even and Odd Functions
Trigonometric Integrals
Symmetry in Functions

Formulas

Fourier series formula: f(x) = a0 + Σ (an cos(nx) + bn sin(nx))
a0 = (1 / 2π) ∫[−π, π] f(x) dx
an = (1 / π) ∫[−π, π] f(x) cos(nx) dx
bn = (1 / π) ∫[−π, π] f(x) sin(nx) dx

Theorems

Properties of Odd and Even Functions
Integration by Parts

Suitable Grade Level

Undergraduate Mathematics or Advanced High School (Grades 11-12)