Math Problem Statement

Find the Fourier series expansion of f(x) = x^2 in [-π, π].

Solution

The problem asks for the Fourier series expansion of f(x)=x2f(x) = x^2 on the interval [π,π][-\pi, \pi]. Let’s solve it step by step:

Step 1: General Fourier Series Formula

The Fourier series of a function f(x)f(x) on the interval [π,π][-\pi, \pi] is: f(x)=a02+n=1(ancos(nx)+bnsin(nx)),f(x) = \frac{a_0}{2} + \sum_{n=1}^\infty \left(a_n \cos(nx) + b_n \sin(nx)\right), where a0=1πππf(x)dx,a_0 = \frac{1}{\pi} \int_{-\pi}^\pi f(x) \, dx, an=1πππf(x)cos(nx)dx,a_n = \frac{1}{\pi} \int_{-\pi}^\pi f(x) \cos(nx) \, dx, bn=1πππf(x)sin(nx)dx.b_n = \frac{1}{\pi} \int_{-\pi}^\pi f(x) \sin(nx) \, dx.

Step 2: Compute a0a_0

For f(x)=x2f(x) = x^2: a0=1πππx2dx.a_0 = \frac{1}{\pi} \int_{-\pi}^\pi x^2 \, dx. Since x2x^2 is an even function, the integral simplifies to: a0=2π0πx2dx.a_0 = \frac{2}{\pi} \int_0^\pi x^2 \, dx. 0πx2dx=[x33]0π=π33.\int_0^\pi x^2 \, dx = \left[\frac{x^3}{3}\right]_0^\pi = \frac{\pi^3}{3}. Thus: a0=2ππ33=2π23.a_0 = \frac{2}{\pi} \cdot \frac{\pi^3}{3} = \frac{2\pi^2}{3}.

Step 3: Compute ana_n

For n1n \geq 1: an=1πππx2cos(nx)dx.a_n = \frac{1}{\pi} \int_{-\pi}^\pi x^2 \cos(nx) \, dx. Since x2cos(nx)x^2 \cos(nx) is an even function: an=2π0πx2cos(nx)dx.a_n = \frac{2}{\pi} \int_0^\pi x^2 \cos(nx) \, dx. Using integration by parts: u=x2,dv=cos(nx)dx,du=2xdx,v=sin(nx)n.u = x^2, \quad dv = \cos(nx) \, dx, \quad du = 2x \, dx, \quad v = \frac{\sin(nx)}{n}. Integration by parts formula gives: x2cos(nx)dx=x2sin(nx)n2xsin(nx)ndx.\int x^2 \cos(nx) \, dx = \frac{x^2 \sin(nx)}{n} - \int \frac{2x \sin(nx)}{n} \, dx. For the second term, we use integration by parts again: u=x,dv=sin(nx)dx,du=dx,v=cos(nx)n.u = x, \quad dv = \sin(nx) \, dx, \quad du = dx, \quad v = -\frac{\cos(nx)}{n}. This yields: xsin(nx)dx=xcos(nx)n+cos(nx)ndx,\int x \sin(nx) \, dx = -\frac{x \cos(nx)}{n} + \int \frac{\cos(nx)}{n} \, dx, and so on. After solving this, we get: an=4n2cos(nπ).a_n = -\frac{4}{n^2} \cos(n\pi).

Step 4: Compute bnb_n

Since x2x^2 is an even function, bn=0b_n = 0 because the integrand x2sin(nx)x^2 \sin(nx) is odd: bn=1πππx2sin(nx)dx=0.b_n = \frac{1}{\pi} \int_{-\pi}^\pi x^2 \sin(nx) \, dx = 0.

Step 5: Final Fourier Series

Substitute the computed coefficients into the Fourier series formula: f(x)=a02+n=1ancos(nx),f(x) = \frac{a_0}{2} + \sum_{n=1}^\infty a_n \cos(nx), where: a02=π23,an=4n2cos(nπ),bn=0.\frac{a_0}{2} = \frac{\pi^2}{3}, \quad a_n = -\frac{4}{n^2} \cos(n\pi), \quad b_n = 0. Thus: f(x)=π234n=1cos(nπ)n2cos(nx).f(x) = \frac{\pi^2}{3} - 4 \sum_{n=1}^\infty \frac{\cos(n\pi)}{n^2} \cos(nx). Note that cos(nπ)=(1)n\cos(n\pi) = (-1)^n, so: f(x)=π234n=1(1)nn2cos(nx).f(x) = \frac{\pi^2}{3} - 4 \sum_{n=1}^\infty \frac{(-1)^n}{n^2} \cos(nx).

Let me know if you'd like a deeper breakdown of any step!


Related Questions

  1. What is the significance of the symmetry properties of f(x)f(x) in Fourier series expansions?
  2. Can you compute the Fourier series for f(x)=x3f(x) = x^3 on [π,π][-\pi, \pi]?
  3. How does the convergence of the Fourier series differ for discontinuous functions?
  4. Why does bnb_n vanish for even functions?
  5. How would the Fourier series change if f(x)=x2f(x) = x^2 were defined on a different interval?

Tip

Always identify the symmetry of a function before computing Fourier series coefficients; it simplifies the calculations significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fourier Series
Even and Odd Functions
Integration by Parts

Formulas

Fourier series formula: f(x) = a0/2 + Σ(an cos(nx) + bn sin(nx))
a0 = (1/π) ∫[−π,π] f(x) dx
an = (1/π) ∫[−π,π] f(x) cos(nx) dx
bn = (1/π) ∫[−π,π] f(x) sin(nx) dx

Theorems

Orthogonality of Sine and Cosine
Integration by Parts

Suitable Grade Level

Undergraduate (Calculus or Engineering)