Math Problem Statement

La solution donné dans mon livre est différente,

La solution donné dans mon livre est différente

Solution

The image you've uploaded shows the calculation of Fourier series coefficients ana_n for a function F(t)F(t). Here’s a step-by-step outline of what is happening and what the final expression represents:

  1. Expression for a0a_0: The first coefficient a0a_0 is calculated as: a0=4T0T/2(4cTtc)dt=0a_0 = \frac{4}{T} \int_0^{T/2} \left( \frac{4c}{T} t - c \right) \, dt = 0 This indicates that the function has no constant (DC) component.

  2. General ana_n formula: For n1n \geq 1, the general formula for ana_n is: an=4T0T/2(4cTtc)cos(nωt)dta_n = \frac{4}{T} \int_0^{T/2} \left( \frac{4c}{T} t - c \right) \cos(n\omega t) \, dt which simplifies using integration by parts: an=16cT0T/2tcos(nωt)dt4cT0T/2cos(nωt)dta_n = \frac{16c}{T} \int_0^{T/2} t \cos(n \omega t) \, dt - \frac{4c}{T} \int_0^{T/2} \cos(n \omega t) \, dt

  3. Solving integrals: After solving the integrals, you get: [

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fourier Series
Integration by Parts
Harmonics

Formulas

a_0 = \frac{4}{T} \int_0^{T/2} \left( \frac{4c}{T} t - c \right) dt = 0
a_n = \frac{4}{T} \int_0^{T/2} \left( \frac{4c}{T} t - c \right) \cos(n \omega t) dt
a_n = \frac{16c}{T} \int_0^{T/2} t \cos(n \omega t) dt - \frac{4c}{T} \int_0^{T/2} \cos(n \omega t) dt

Theorems

Fourier Series Coefficient Formula
Integration by Parts

Suitable Grade Level

Undergraduate Level (Mathematics or Engineering)