Math Problem Statement

how did you do this Substituting f(x)f(x):

bn=1π∫0πsin⁡(nx)dx=1nπ[−cos⁡(nx)]0π.bn​=π1​∫0π​sin(nx)dx=1​[−cos(nx)]0π​.

Using cos⁡(nπ)=(−1)ncos()=(−1)n:

bn=2nπfor odd n,bn=0for even n.bn​=2​for odd n,bn​=0for even n.

Solution

The expression you're referring to involves calculating the Fourier coefficients, specifically for the function f(x)=sin(nx)f(x) = \sin(nx) over the interval [0,π][0, \pi]. Here's how we proceed step-by-step:

Step-by-step breakdown:

  1. Fourier Coefficient Formula: The formula for the Fourier sine coefficient bnb_n is given by: bn=2π0πf(x)sin(nx)dxb_n = \frac{2}{\pi} \int_0^\pi f(x) \sin(nx) \, dx In this case, we are dealing with the function f(x)=sin(x)f(x) = \sin(x).

  2. Set up the integral: We substitute f(x)=sin(x)f(x) = \sin(x) into the formula for bnb_n: bn=2π0πsin(x)sin(nx)dxb_n = \frac{2}{\pi} \int_0^\pi \sin(x) \sin(nx) \, dx

  3. Use the Product-to-Sum Formula: To simplify the product of sines, we use the identity: sin(x)sin(nx)=12[cos((n1)x)cos((n+1)x)]\sin(x) \sin(nx) = \frac{1}{2} \left[ \cos((n-1)x) - \cos((n+1)x) \right] This allows us to split the integral into two parts: bn=2π0π12[cos((n1)x)cos((n+1)x)]dxb_n = \frac{2}{\pi} \int_0^\pi \frac{1}{2} \left[ \cos((n-1)x) - \cos((n+1)x) \right] dx

  4. Simplify the Integral: Now, calculate the integral term-by-term: bn=1π[0πcos((n1)x)dx0πcos((n+1)x)dx]b_n = \frac{1}{\pi} \left[ \int_0^\pi \cos((n-1)x) \, dx - \int_0^\pi \cos((n+1)x) \, dx \right]

  5. Evaluate the Integrals: Each of these integrals is straightforward: 0πcos(kx)dx=sin(kx)k0π=sin(kπ)ksin(0)k\int_0^\pi \cos(kx) \, dx = \frac{\sin(kx)}{k} \Big|_0^\pi = \frac{\sin(k\pi)}{k} - \frac{\sin(0)}{k} Since sin(kπ)=0\sin(k\pi) = 0 for any integer kk, both integrals evaluate to 0 unless k=0k = 0.

  6. Conclusion: The integrals evaluate to 0 unless n=1n = 1 (since cos(nx)\cos(nx) at x=0x = 0 and x=πx = \pi gives us nonzero values only for odd multiples of nn). Therefore, bnb_n will only be non-zero for odd nn, and it will have the value: bn=2nπfor odd nb_n = \frac{2}{n\pi} \quad \text{for odd } n For even nn, bn=0b_n = 0.

Final result:

bn=2nπfor odd n,bn=0for even nb_n = \frac{2}{n\pi} \quad \text{for odd } n, \quad b_n = 0 \quad \text{for even } n


Would you like further clarification or more examples on Fourier series? Here are some related questions you could explore:

  1. How do you calculate the Fourier series for other periodic functions like square waves or sawtooth waves?
  2. Can you derive the Fourier sine and cosine series for a general function over an arbitrary interval?
  3. How does the choice of orthogonal functions (like sine and cosine) help in Fourier analysis?
  4. What is the significance of the orthogonality property in Fourier series expansions?
  5. How does the convergence of the Fourier series work when the function is discontinuous?

Tip: When solving Fourier integrals, always check if you can use standard identities (like the product-to-sum identity) to simplify the integrals!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fourier Series
Orthogonal Functions
Trigonometric Integration

Formulas

Fourier sine coefficient: bn = (2/π) ∫[0,π] f(x) sin(nx) dx
Product-to-sum formula: sin(a)sin(b) = 1/2 [cos(a-b) - cos(a+b)]
Cosine property: cos(nπ) = (-1)^n

Theorems

Orthogonality of Sine Functions
Fourier Series Expansion

Suitable Grade Level

Undergraduate Level (Mathematics, Engineering)