Math Problem Statement

Solve

Solution

The equation provided is:

an=2111f(t)cos(nt)dt=10(t+1)cos(nt)dt+01(t+1)cos(nt)dta_n = \frac{2}{1} \int_{-1}^{1} f(t) \cos(nt) \, dt = \int_{-1}^{0} (t+1)\cos(nt) \, dt + \int_{0}^{1} (-t+1)\cos(nt) \, dt

Let's solve each integral step by step.

Step 1: Evaluate the first integral

The first integral is:

10(t+1)cos(nt)dt\int_{-1}^{0} (t+1)\cos(nt) \, dt

We will use integration by parts to solve this integral. Let:

  • u=t+1u = t+1, hence du=dtdu = dt
  • dv=cos(nt)dtdv = \cos(nt) \, dt, hence v=sin(nt)nv = \frac{\sin(nt)}{n}

Using integration by parts, udv=uvvdu\int u \, dv = uv - \int v \, du, we get:

(t+1)cos(nt)dt=(t+1)sin(nt)nsin(nt)ndt\int (t+1)\cos(nt) \, dt = (t+1)\frac{\sin(nt)}{n} - \int \frac{\sin(nt)}{n} \, dt

The integral of sin(nt)\sin(nt) is:

sin(nt)dt=cos(nt)n\int \sin(nt) \, dt = -\frac{\cos(nt)}{n}

Thus:

10(t+1)cos(nt)dt=[(t+1)sin(nt)n+cos(nt)n2]10\int_{-1}^{0} (t+1)\cos(nt) \, dt = \left[\frac{(t+1)\sin(nt)}{n} + \frac{\cos(nt)}{n^2}\right]_{-1}^{0}

Now, evaluate from 1-1 to 00:

At t=0t = 0:

(0+1)sin(0)n+cos(0)n2=0+1n2=1n2\frac{(0+1)\sin(0)}{n} + \frac{\cos(0)}{n^2} = 0 + \frac{1}{n^2} = \frac{1}{n^2}

At t=1t = -1:

(1+1)sin(n)n+cos(n)n2=0+cos(n)n2=cos(n)n2\frac{(-1+1)\sin(-n)}{n} + \frac{\cos(-n)}{n^2} = 0 + \frac{\cos(n)}{n^2} = \frac{\cos(n)}{n^2}

So, the first integral evaluates to:

1n2cos(n)n2=1cos(n)n2\frac{1}{n^2} - \frac{\cos(n)}{n^2} = \frac{1 - \cos(n)}{n^2}

Step 2: Evaluate the second integral

The second integral is:

01(t+1)cos(nt)dt\int_{0}^{1} (-t+1)\cos(nt) \, dt

Similarly, using integration by parts:

  • u=t+1u = -t+1, du=dtdu = -dt
  • dv=cos(nt)dtdv = \cos(nt) \, dt, v=sin(nt)nv = \frac{\sin(nt)}{n}

Thus:

(t+1)cos(nt)dt=(t+1)sin(nt)nsin(nt)n(dt)\int (-t+1)\cos(nt) \, dt = (-t+1)\frac{\sin(nt)}{n} - \int \frac{\sin(nt)}{n} \, (-dt)

This simplifies to:

01(t+1)cos(nt)dt=[(t+1)sin(nt)ncos(nt)n2]01\int_{0}^{1} (-t+1)\cos(nt) \, dt = \left[\frac{(-t+1)\sin(nt)}{n} - \frac{\cos(nt)}{n^2}\right]_{0}^{1}

Now, evaluate from 00 to 11:

At t=1t = 1:

(1+1)sin(n)ncos(n)n2=0cos(n)n2=cos(n)n2\frac{(-1+1)\sin(n)}{n} - \frac{\cos(n)}{n^2} = 0 - \frac{\cos(n)}{n^2} = -\frac{\cos(n)}{n^2}

At t=0t = 0:

(01)sin(0)ncos(0)n2=01n2=1n2\frac{(0-1)\sin(0)}{n} - \frac{\cos(0)}{n^2} = 0 - \frac{1}{n^2} = -\frac{1}{n^2}

So, the second integral evaluates to:

cos(n)n2+1n2=1cos(n)n2-\frac{\cos(n)}{n^2} + \frac{1}{n^2} = \frac{1 - \cos(n)}{n^2}

Step 3: Combine the results

Now, summing the results of the two integrals:

an=1cos(n)n2+1cos(n)n2=2(1cos(n))n2a_n = \frac{1 - \cos(n)}{n^2} + \frac{1 - \cos(n)}{n^2} = \frac{2(1 - \cos(n))}{n^2}

So the final answer is:

an=2(1cos(n))n2a_n = \frac{2(1 - \cos(n))}{n^2}

Would you like further clarification or details on any of these steps?

Here are some related questions to further explore:

  1. How does the result change if nn is a specific integer value, like n=1n = 1 or n=2n = 2?
  2. What happens if the cosine function is replaced with a sine function in the integrals?
  3. How can we apply this method to different piecewise functions?
  4. What is the physical interpretation of ana_n in the context of Fourier series?
  5. How does the Fourier series change if the function f(t)f(t) has different boundary conditions?

Tip: When dealing with trigonometric integrals, integration by parts is a powerful tool, especially when the product of a polynomial and a trigonometric function is involved.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fourier Series
Trigonometric Integrals
Integration by Parts

Formulas

Fourier series coefficient formula

Theorems

-

Suitable Grade Level

Advanced undergraduate