Math Problem Statement

Find a formula in terms of k for the entries of Ak, where A is the diagonalizable matrix below.

A = 6−84−6 --> this is a 2 x 2 matrix btw

Solution

To find the formula for the entries of AkA^k (the kk-th power of AA), where AA is diagonalizable, we proceed as follows:


Step 1: Diagonalization of AA

The matrix AA can be diagonalized if it can be written as: A=PDP1A = P D P^{-1} where:

  • DD is the diagonal matrix containing the eigenvalues of AA.
  • PP is the matrix whose columns are the eigenvectors of AA.

Then: Ak=PDkP1A^k = P D^k P^{-1}


Step 2: Find the Eigenvalues of AA

The eigenvalues of AA are the roots of the characteristic polynomial: det(AλI)=0\det(A - \lambda I) = 0 For A=[6846]A = \begin{bmatrix} 6 & -8 \\ 4 & -6 \end{bmatrix}, we compute: det[6λ846λ]=(6λ)(6λ)(8)(4)\det\begin{bmatrix} 6-\lambda & -8 \\ 4 & -6-\lambda \end{bmatrix} = (6-\lambda)(-6-\lambda) - (-8)(4) =λ20λ100= \lambda^2 - 0\lambda - 100 =λ2100= \lambda^2 - 100 The eigenvalues are: λ=10,λ=10\lambda = 10, \quad \lambda = -10


Step 3: Find DkD^k

The diagonal matrix DD is: D=[100010]D = \begin{bmatrix} 10 & 0 \\ 0 & -10 \end{bmatrix} Raising DD to the kk-th power is straightforward: Dk=[10k00(10)k]D^k = \begin{bmatrix} 10^k & 0 \\ 0 & (-10)^k \end{bmatrix}


Step 4: Find PP and P1P^{-1}

The eigenvectors corresponding to λ=10\lambda = 10 and λ=10\lambda = -10 are:

  1. For λ=10\lambda = 10: Solve (A10I)x=0(A - 10I)x = 0: [48416][x1x2]=0\begin{bmatrix} -4 & -8 \\ 4 & -16 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 A solution is x=[21]x = \begin{bmatrix} 2 \\ -1 \end{bmatrix}.

  2. For λ=10\lambda = -10: Solve (A+10I)x=0(A + 10I)x = 0: [16844][x1x2]=0\begin{bmatrix} 16 & -8 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 A solution is x=[12]x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.

Thus: P=[2112],P1=15[2112]P = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}, \quad P^{-1} = \frac{1}{5} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}


Step 5: Compute AkA^k

Using Ak=PDkP1A^k = P D^k P^{-1}, we substitute:

\begin{bmatrix} 10^k & 0 \\ 0 & (-10)^k \end{bmatrix} \frac{1}{5} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$$ Perform the multiplications to find the general formula for $$A^k$$. For brevity: $$A^k = \frac{1}{5} \begin{bmatrix} 2 \cdot 10^k + (-10)^k & -10^k + 2 \cdot (-10)^k \\ -2 \cdot 10^k + 10^k & 10^k + 2 \cdot (-10)^k \end{bmatrix}$$ --- ### Final Answer: The entries of $$A^k$$ are: $$A^k = \frac{1}{5} \begin{bmatrix} 2 \cdot 10^k + (-10)^k & -10^k + 2 \cdot (-10)^k \\ -2 \cdot 10^k + 10^k & 10^k + 2 \cdot (-10)^k \end{bmatrix}.$$ Let me know if you'd like to see the detailed computation for the matrix multiplications or have further questions! --- ### Related Questions: 1. What is the significance of diagonalizability in matrix powers? 2. How do eigenvalues affect the behavior of $$A^k$$ as $$k \to \infty$$? 3. Can $$A$$ be diagonalized if its eigenvalues are complex? 4. What happens if $$A$$ is not diagonalizable? How do we compute $$A^k$$? 5. How does the determinant of $$A$$ relate to the product of eigenvalues? --- ### Tip: Diagonalization simplifies the computation of large matrix powers, especially when the eigenvalues have distinct patterns (e.g., repeated or zero eigenvalues).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Diagonalization
Eigenvalues and Eigenvectors

Formulas

A = P D P^(-1)
A^k = P D^k P^(-1)
Characteristic polynomial: det(A - λI) = 0

Theorems

Diagonalization Theorem
Eigenvalue Computation via Characteristic Polynomial
Matrix Multiplication Rules

Suitable Grade Level

Undergraduate (Linear Algebra)