Math Problem Statement

diagonalize this 2 by 2 matrix 4 2 3 -1

Solution

To diagonalize a 2×22 \times 2 matrix, we need to follow these steps:

Given the matrix: A=(4231)A = \begin{pmatrix} 4 & 2 \\ 3 & -1 \end{pmatrix}

  1. Find the eigenvalues by solving the characteristic equation:
    det(AλI)=0\det(A - \lambda I) = 0 where II is the identity matrix, and λ\lambda represents the eigenvalues.

  2. Find the eigenvectors corresponding to each eigenvalue by solving (AλI)v=0(A - \lambda I) \mathbf{v} = 0.

  3. Form the matrix PP using the eigenvectors as columns.

  4. Construct the diagonal matrix DD, where the diagonal elements are the eigenvalues.

Let's compute the eigenvalues first:

Step 1: Find the Eigenvalues

The characteristic equation is: det(AλI)=det(4λ231λ)=0\det(A - \lambda I) = \det \begin{pmatrix} 4 - \lambda & 2 \\ 3 & -1 - \lambda \end{pmatrix} = 0

Calculating the determinant: (4λ)(1λ)23=0(4 - \lambda)(-1 - \lambda) - 2 \cdot 3 = 0

Expanding this: (4λ)(1λ)=44λ+λ+λ2=λ23λ4(4 - \lambda)(-1 - \lambda) = -4 - 4\lambda + \lambda + \lambda^2 = \lambda^2 - 3\lambda - 4

So: λ23λ46=0λ23λ10=0\lambda^2 - 3\lambda - 4 - 6 = 0 \quad \Rightarrow \quad \lambda^2 - 3\lambda - 10 = 0

Solving this quadratic equation: λ=(3)±(3)24(1)(10)2(1)=3±9+402=3±492\lambda = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-10)}}{2(1)} = \frac{3 \pm \sqrt{9 + 40}}{2} = \frac{3 \pm \sqrt{49}}{2} λ=3±72\lambda = \frac{3 \pm 7}{2} Thus, the eigenvalues are: λ1=3+72=5,λ2=372=2\lambda_1 = \frac{3 + 7}{2} = 5, \quad \lambda_2 = \frac{3 - 7}{2} = -2

Step 2: Find the Eigenvectors

For λ1=5\lambda_1 = 5, solve (A5I)v=0(A - 5I) \mathbf{v} = 0: A5I=(452315)=(1236)A - 5I = \begin{pmatrix} 4 - 5 & 2 \\ 3 & -1 - 5 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 3 & -6 \end{pmatrix} Solving (1236)(xy)=(00)\begin{pmatrix} -1 & 2 \\ 3 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, gives: 1x+2y=0x=2y-1x + 2y = 0 \quad \Rightarrow \quad x = 2y Let y=1y = 1, then x=2x = 2. So an eigenvector corresponding to λ1=5\lambda_1 = 5 is: v1=(21)\mathbf{v_1} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}

For λ2=2\lambda_2 = -2, solve (A+2I)v=0(A + 2I) \mathbf{v} = 0: A+2I=(4+2231+2)=(6231)A + 2I = \begin{pmatrix} 4 + 2 & 2 \\ 3 & -1 + 2 \end{pmatrix} = \begin{pmatrix} 6 & 2 \\ 3 & 1 \end{pmatrix} Solving (6231)(xy)=(00)\begin{pmatrix} 6 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, gives: 6x+2y=03x+y=0y=3x6x + 2y = 0 \quad \Rightarrow \quad 3x + y = 0 \quad \Rightarrow \quad y = -3x Let x=1x = 1, then y=3y = -3. So an eigenvector corresponding to λ2=2\lambda_2 = -2 is: v2=(13)\mathbf{v_2} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}

Step 3: Form the Matrix PP

The matrix PP is formed by using the eigenvectors as its columns: P=(2113)P = \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix}

Step 4: Construct the Diagonal Matrix DD

The diagonal matrix DD is: D=(5002)D = \begin{pmatrix} 5 & 0 \\ 0 & -2 \end{pmatrix}

Thus, the matrix AA can be diagonalized as: A=PDP1A = P D P^{-1}

Would you like further details or have any questions?

Related Questions:

  1. How do you compute the inverse of a matrix like PP?
  2. Why do we diagonalize matrices in linear algebra?
  3. What are the applications of diagonalizing a matrix?
  4. How would you diagonalize a 3×33 \times 3 matrix?
  5. What happens if a matrix does not have distinct eigenvalues?

Tip:

Diagonalizing a matrix simplifies many matrix computations, such as raising it to large powers.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Diagonalization
Eigenvalues
Eigenvectors

Formulas

Characteristic equation: det(A - λI) = 0
Quadratic formula: λ = [-b ± √(b² - 4ac)] / 2a
Eigenvector equation: (A - λI)v = 0

Theorems

Eigenvalue Theorem
Diagonalization Theorem

Suitable Grade Level

Undergraduate Level (College Linear Algebra)