Math Problem Statement

В задаче на скриншоте необходимо найти предел x_n. Я не пойму переход limn12(xn+axn)=12(x+ax). Объясни его пожалуйста\lim_{n\to\infty}\frac12\left(x_{n}+\frac{a}{x_{n}}\right)=\frac12\left(x+\frac{a}{x}\right)\text{. Объясни его пожалуйста}

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits of sequences
Monotonic sequences
Properties of continuous functions

Formulas

x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n}\right)
\lim_{n \to \infty} x_n = x
\lim_{n \to \infty} \frac{1}{2} \left(x_n + \frac{a}{x_n}\right) = \frac{1}{2} \left(x + \frac{a}{x}\right)

Theorems

Weierstrass Theorem on Monotone Sequences
Limit of Continuous Function of a Converging Sequence

Suitable Grade Level

Undergraduate